Task: 1.3
Version: 0.1
Date: June 1999

The OpenMath Standard

The OpenMath Esprit Consortium

Editors
O. Caprotti and A. M. Cohen

D1.3.3a (DRAFT)

© 1999 The OpenMath Consortium (24.969)

ESPRIT project 24969: OpenMath

ii The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

Abstract

This document proposes OpenMath as a standard for the communication of
semantically rich mathematical objects. This draft of the OpenMath standard
comprises the following: a description of OpenMath objects, the grammar of
xML and of the binary encoding of objects, a description of Content Dictionar-
ies and an XML document type definition for validating Content Dictionaries.
The non-normative Chapter 1 of this document briefly overviews the history
of OpenMath.

The OpenMath Standard (Task: 1.3)

iii

ESPRIT project 24969: OpenMath

iv The OpenMath Standard (Task: 1.3)

Contents

1 OpenMath History 4
1.1 History o i o e e e e e e e 4
1.2 Conclusion e 5

2 Introduction to OpenMath 6
2.1 OpenMath Architecture 6
2.2 Content Dictionaries o o e e 6
2.3 Phrasebooks. 7
2.4 OpenMath Objects and Encodings 8

3 OpenMath Objects 9
3.1 Informal description of OpenMath objects 9
3.2 Formal definition of OpenMath objects, 11
3.3 Summary e e e 13

4 OpenMath Encodings 14
4.1 The XML Encoding e 14

4.1.1 A Grammar for the XML Encoding 14
4.1.2 Description of the Grammar, 16
4.2 The Binary Encoding Lo 20
4.2.1 A Grammar for the Binary Encoding 20
4.2.2 Description of the Grammar. L. 20
4.2.3 Implementation Note. 23
4.2.4 Example of Binary Encoding oL, 23
4.2.5 Summary e e e e 24

Page 1 of 49

ESPRIT project 24969: OpenMath

5 Content Dictionaries
5.1 Introduction.,
5.2 Content Dictionary functionality
5.3 An encoding for Content Dictionaries.
5.3.1 The DTD specification of a Content Dictionary
5.3.2 Further requirements of an OpenMath Content
5.4 Content Dictionary Signature Files
5.4.1 XML DTD for Signature Files
5.5 Content Dictionary Groups
5.5.1 XML DTD for CDGroup Files

6 OpenMath Compliance

25

............... 25
............... 26
............... 27
............... 28
Dictionary 28
............... 30
............... 30
............... 31
............... 31

32

6.1 Level 1: How an Application Must Behave with Respect to Content Dictionaries 33

6.2 Level 2: Simple Communication
6.2.1 Encoding Errors
6.2.2 Operational and Implementation Errors
6.2.3 Asynchronous Errors

6.3 Level 3.

6.4 Leveld.

7 Conclusion
A The Meta Content Dictionary

B The arithl Content Dictionary

............... 34
............... 35
............... 35
............... 36
............... 36
............... 36

37

38

43

Page 2 of 49

The OpenMath Standard (Task: 1.3)

List of Figures

21

3.1

4.1

4.2
4.3

5.1

The OpenMath Architecture 7

The OpenMath application and binding objects for sin(z) and A\x.z +2 in tree-like

notation. L e e e e e e 12
Grammar for the XML encoding of OpenMath objects. 15
DTD for the OpenMath XML encoding of objects. 17
Grammar of the binary encoding of OpenMath objects. 21
DTD of OpenMath Content Dictionaries 29

Page 3 of 49

Chapter 1

OpenMath History

This chapter is a historical account of OpenMath and should be regarded as non-normative.

OpenMath is a standard for representing mathematical objects, allowing them to be exchanged
between computer programs, stored in databases, or published on the worldwide web. While
the original designers were mainly developers of computer algebra systems, it is now attracting
interest from other areas of scientific computation and from many publishers of electronic doc-
uments with a significant mathematical content. There is a strong relationship to the MathML
recommendation [5] from the Worldwide Web Consortium, and a large overlap between the two
developer communities. MathML deals principally with the presentation of mathematical object-
s, while OpenMath is solely concerned with their semantic meaning or content. While MathML
does have some limited facilities for dealing with content, it also allows semantic information
encoded in OpenMath to be embedded inside a MathML structure. Thus the two technologies
may be seen as highly complementary.

1.1 History

OpenMath was originally developed through a series of workshops held in Zurich (1993 and
1996), Oxford (1994), Amsterdam (1995), Copenhagen (1995), Bath (1996), Dublin (1996),
Nice (1997), Yorktown Heights (1997), Berlin (1998), and Tallahassee (1998). The participants
in these workshops form a global OpenMath community which is coordinated by a Steering
Committee and operates through electronic mailing groups and ad-hoc working parties. This
loose arrangement has been formalised through the establishment of an OpenMath Society. Up
until the end of 1996 much of the work of the community was funded through a grant from
the Human Capital and Mobility program of the European Union, the contributions of several
institutions and individuals. A document outlining the objectives and basic design of OpenMath
was produced (later published as [3]). By the end of 1996 a simplified specification had been
agreed on and some prototype implementations have come about [11].

In 1996 a group of European participants in OpenMath decided to bid for funding under the
European Union’s Fourth Framework Programme for strategic research in information technol-
ogy. This bid was successful and the project started in late 1997. The principal aims of the
project are to formalise OpenMath as a standard and to develop it further through industrial
applications; this document is a product of that process and draws heavily on the previous work

Page 4 of 49

ESPRIT project 24969: OpenMath

described earlier. OpenMath participants from all over the world continue to meet regularly
and cooperate on areas of mutual interest, and at their most recent workshop in Tallahassee
(November 1998) endorsed this document as the current OpenMath standard.

1.2 Conclusion

OpenMath has grown from a common language for communication of mathematical objects
to standard for communication between a far greater variety of software tools than computer
algebra systems. The fact that the new standard enables the transport of typed lambda calculus
expressions, sees to it that any formal mathematical statement, as well as its formal proof, can
be communicated between automated proof checkers and other software. Thus, the possibility
arises for a new Bourbakian universe whose data carrier is OpenMath.

The OpenMath Standard (Task: 1.3) Page 5 of 49

Chapter 2

Introduction to OpenMath

This chapter briefly introduces OpenMath concepts and notions that are referred to in the rest
of this document.

2.1 OpenMath Architecture

The architecture of OpenMath is described in Figure 2.1 and summarizes the interactions among
the different OpenMath components. There are three layers of representation of a mathematical
object [8]. A private layer that is the internal representation used by an application. An abstract
layer that is the representation as an OpenMath object. Third is a communication layer that
translates the OpenMath object representation to a stream of bytes. An application dependent
program manipulates the mathematical objects using its internal representation, it can convert
them to OpenMath objects and communicate them by using the byte stream representation of
OpenMath objects.

2.2 Content Dictionaries

Content Dictionaries (CDs) are used to assign informal and formal semantics to all symbols
used in the OpenMath objects. They define the symbols used to represent concepts arising in a
particular area of mathematics.

The Content Dictionaries are public, they represent the actual common knowledge among Open-
Math applications. Content Dictionaries fix the “meaning” of objects independently of the ap-
plication. The application receiving the object may then recognize whether or not, according to
the semantics of the symbols defined in the Content Dictionaries, the object can be transformed
to the corresponding internal representation used by the application.

Page 6 of 49

ESPRIT project 24969: OpenMath

Program A Program B
A-Specific B-Specific
Representation Representation

g

[} [} ©

E

&

Phrasebook A Phrasebook B
CDs CDs
A4 \ 4

OpenMath <Possible Object Shortcut OpenMath

Object Object %

A A §

®

OM encoding OM encoding
\ 4 \ A

g

Encoded <Seneral Transport Layer | Encoded ‘—CB

Object (XML or Binary) Object %

=

=}

E

&

o

Figure 2.1: The OpenMath Architecture

2.3 Phrasebooks

The conversion of an OpenMath object to/from the internal representation in a software appli-
cation is performed by an interface program called Phrasebook. The translation is governed by
the Content Dictionaries and the specifics of the application. It is envisioned that a software
application dealing with a specific area of mathematics declares which Content Dictionaries it
understands. As a consequence, it is expected that the Phrasebook of the application is able to
translate OpenMath objects built using symbols from these Content Dictionaries to/from the
internal mathematical objects of the application.

OpenMath objects do not carry any behavioural directive, they merely represent mathematical
entities. This gives the freedom to a Phrasebook, while interpreting an OpenMath object, e.g.,
of renaming bound variables since this does not change the mathematical entity conveyed by the
OpenMath object.

The OpenMath Standard (Task: 1.3) Page 7 of 49

ESPRIT project 24969: OpenMath

Part of the OpenMath philosophy is to leave it to the application to decide what it does with
an object once it has received it. OpenMath has no intention of being a query or programming
language but a language to represent mathematical entities. Because of this, OpenMath does not
prescribe a way of forcing “evaluation” or “simplification” of objects like 2 + 3 or sin(7). Thus,
the same object 2 + 3 could be transformed to 5 by a computer algebra system, or displayed as
2 + 3 by a typesetting tool.

2.4 OpenMath Objects and Encodings

OpenMath objects are representations of mathematical entities that can be communicated among
various software applications in a meaningful way, that is, preserving their “semantics”.

OpenMath objects and encodings are described in detail in Chapter 3 and Chapter 4.

Page 8 of 49 The OpenMath Standard (Task: 1.3)

Chapter 3

OpenMath Objects

In this chapter we provide a self-contained description of OpenMath objects. We first do so at an
informal level (Section 3.1) and next by means of an abstract grammar description (Section 3.2).

3.1 Informal description of OpenMath objects

Informally, an OpenMath object can be viewed as a tree and is also referred to as a term. The
objects at the leaves of OpenMath trees are called basic objects. The basic objects supported
by OpenMath are:

Integers in the mathematical sense, with no predefined range. They are “infinite precision”
integers (also called “bignums” in computer algebra).

Symbols are uniquely defined by a Content Dictionary in which they occur and by a name.
Each symbol has no more than one definition in a Content Dictionary. More Content
Dictionaries may define differently a symbol with the same name (e.g., the symbol plus
can be defined as associative operator in one Content Dictionary and as an associative-
commutative operator in another Content Dictionary). The name of a symbol can only
contain alphanumeric characters. More precisely, a symbol name verifies the following
regular expression:

[A-Za-z] [A-Za-z0-9_]*

Notice that these symbol names are case sensitive. OpenMath recommends that symbol
names should be no longer than 100 characters. Rendering of the symbol is explained in
the presentation field of the symbol’s definition in the Content Dictionary.

Variables are meant to denote parameters, variables or indeterminates (such as bound vari-
ables of function definitions, variables in summations and integrals, independent variables
of derivatives). Variable names are restricted to use a subset of the printable ASCII charac-
ters. Some OpenMath renderers may interpret these names as UTF-7 [12] encoded unicode
characters for the purpose of displaying the variable. Formally the names must match the
regular expression:

[A-Za-z0-9=" () ,-./: 7 #$%*;=[1~_‘{|}]+

Page 9 of 49

ESPRIT project 24969: OpenMath

For example the variable named +A7E- might be displayed by an OpenMath renderer as a
as +A7E- is the UTF7 encoding for unicode position hex 3B1.

Floating-point numbers are computer objects rather than bigfloats. They are double preci-
sion floating-point numbers following the IEEE 754-1985 standard [2].

Character strings are sequences of characters. These characters come from the Unicode stan-
dard [9].

Bytearrays are sequences of bytes. There is no “byte” in OpenMath as an object of its own.
However, a single byte can of course be represented by a bytearray of length 1. The
difference between strings and bytearrays is the following: a character string is a sequence
of bytes with a fixed interpretation (as characters, Unicode texts may require several bytes
to code one character), whereas a bytearray is an uninterpreted sequence of bytes with no
intrinsic meaning. Bytearrays could be used inside OpenMath errors to provide information
to, for example, a debugger; they could also contain intermediate results of calculations.

The four following constructs can be used to make compound OpenMath objects.

Application constructs an OpenMath object from a sequence of one or more OpenMath ob-
jects. The first argument of application is referred to as "head” while the remaining objects
will be called “arguments”. An OpenMath application object can be used to convey the
mathematical notion of application of a function to a set of arguments like in sin(z). More
generally, an OpenMath application object can be used to convey a mathematical object
built from other objects such as a polynomial constructed from a set of monomials.

Binding objects are constructed from an OpenMath object, and from a sequence of zero or more
variables followed by another OpenMath object. The first OpenMath object is the binder
object. Arguments 2 to n— 1 are always variables to be bound in the body which is the nt"
argument object. It is allowed to have no bound variables, but the binder object and the
body should be present. Binding can be used to express functions or logical statements.
The function Az.xz + 2, in which the variable z is bound by A, corresponds to a binding
object having as binder the OpenMath symbol lambda.

Attribution decorates an object with a sequence of one or more pairs made up of an OpenMath
symbol (the attribute) and an associated OpenMath object (the value of the attribute).
The value of the attribute can be an attribution object itself. As example of this, consider
the OpenMath objects representing groups, automorphism groups, and group dimensions.
It is then possible to attribute an OpenMath object representing a group by its automor-
phism group, itself attributed by its dimension.

Attribution can act as either “annotation”, in the sense of adornment, or as “modifier”.

In the former case, replacement of the adorned object by the object itself is probably
not harmful (preserves the semantics) In the latter case however, it may very well be.
Therefore, attribution in general should by default be treated as a construct rather than
as adornment. Only when the CD definitions of the attributes make it clear that they are
adornments, can the attributed object be viewed as semantically equivalent to the stripped
object.

Error is made up of an OpenMath symbol and a sequence of zero or more OpenMath objects.
This object has no direct mathematical meaning. Errors occur as the result of some
treatment on an OpenMath object and are thus of real interest only when some sort of
communication is taking place. Errors may occur inside other objects and also inside other
errors. We can think of the following kinds of error:

Page 10 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

e mathematical errors directly related to the mathematical meaning of some symbols
(as specified in the relevant content dictionary), e.g., as division by zero

e construction errors occurring when some structural constraints on a particular object
have been violated, e.g., malformed object, expecting a numeric argument, CD
name not found ...

e operational errors reporting a known limitation in a program, e.g., operation not
implemented or partially implemented

e implementation errorsreporting an unexpected problem in a program, e.g., assertion
failed

e external (asynchronous) errors completely dynamic and out of the control of the
programmer, e.g., damaged encoding, not enough memory, time limit reached,
remote machine down, ...

Observe that an OpenMath application object is viewed as a “tree” by software applications that
do not understand Content Dictionaries, whereas a Phrasebook that understands the semantics of
the head label, as defined in the Content Dictionaries, should interpret the object as functional
application, as constructor, or as variable binding accordingly. Thus, for example, for some
application, the OpenMath object corresponding to 2+ 5 may be seen as a command to write 7.

3.2 Formal definition of OpenMath objects

OpenMath represents mathematical objects as terms or as labelled trees that are called Open-
Math objects or OpenMath expressions. The definition of an abstract OpenMath object is then
the following.
Definition 1 (Basic OpenMath objects)
Integers, symbols (defined in Content Dictionaries), variables, floating point numbers, character
strings, and bytearrays are basic OpenMath objects.
Definition 2 (OpenMath objects)
OpenMath objects are built recursively as follows.

(i) Basic OpenMath objects are OpenMath objects.

(i) If Ay, ..., Ap (n>0) are OpenMath objects, then

application(Ay,..., A,)

is an OpenMath application object.
(i5i) If B and C are OpenMath objects, and v1, ..., v, (n > 0) are OpenMath variables, then

binding(B, vy, ..., vn,C)

is an OpenMath binding object.
(w) If Si,...,S, are OpenMath symbols, and A, Ay, ..., A,, (n > 0) are OpenMath objects,
then
attribution(A4,S5, Ay, ... , S, 4p)

is an OpenMath attribution object.

The OpenMath Standard (Task: 1.3) Page 11 of 49

ESPRIT project 24969: OpenMath

application binding

sin X A X application

+ X 2

Figure 3.1: The OpenMath application and binding objects for sin(z) and Az.z + 2 in tree-like
notation.

(v) If S is an OpenMath symbol and A1, ..., A, (n > 0) are OpenMath objects, then
error(S, A;,..., An)

is an OpenMath error object.

A few comments are in order.

Symbols An OpenMath symbol always carries the name of the Content Dictionary that defines
it. In the definition above we have left this information implicit. However, it should be
kept in mind that all symbols appearing in an OpenMath object are defined in a Content
Dictionary. The form of these definitions is explained in Chapter 6.

Application OpenMath recognizes functional application and constructors. For instance, sup-
pose that the OpenMath symbol sin is defined in a Content Dictionary for trigonometry,
then application(sin,z) is the abstract OpenMath object corresponding to sin(x). Con-
structors build inhabitants of some symbolic type, like for instance the type of rational
numbers or the type of polynomials. The rational number, usually denoted as 1/2, is
represented by the OpenMath application object application(Rational,1,2). The sym-
bol Rational must be defined, by a Content Dictionary, as a constructor symbol for the
rational numbers.

Binding Variable binding is expressed using OpenMath binding objects. The head symbol
denotes the binder object, for instance lambda, exists, or Set0f (integer). A sequence
of variables and the object in which they are bound follows the head of the binding object.
Thus the mathematical function Az.x + 2 is represented by the OpenMath object

binding(lambda, z, application(plus z 2)).

Binding of several variables as in:
binding(B,v1,...,v,,C)
is semantically equivalent to composition of binding of a single variable, namely

binding(B,v;, (binding(B, v, (. .., binding(B,v,,C)...).

Page 12 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

In view of this, repeated occurrences of the same variable in a binding are disambiguated
consequently. For instance, the object:

binding(lambda, v, v, application(times,v,v))
is semantically equivalent to:
binding(lambda, v, binding(lambda, v, application(times,v,v)))

so that the outermost binding is actually a constant function (v does not occur free in the
body application(times,v,v)))).

Phrasebooks are allowed use a conversion in order to avoid clashes of variable names.
Suppose an object contains an occurrence of the object binding(B, v, C). This object
binding(B,v,C) can be replaced in Q by binding(B, z,C") where z is a variable not
occurring free in C' and C' is obtained from C by replacing each occurrence of v by z. This
operation preserves the semantics of the object Q. In the above example, a phrasebook is
thus allowed to transform the object to, e.g.

binding(lambda, v, binding(lambda, z, application(times, z, 2))).
Attribution Composition of attributions, as in
attribution(attribution(A4,S; Ay,..., Sy Ap), Sha1 Anst,---, 50 An)
is semantically equivalent to a single attribution, that is

attribution(A4, Sy A1,..., Sy An, Sh+1 Apt1,-- -, S0 An)-

Multiple attributes with the same name are allowed. While the order of the given attributes
does not imply any notion of priority, potentially it could be significant. For instance,
consider the case in which Sy, = S, (h < n) in the example above. Then, the object is to
be interpreted as if the value A, overwrites the value Ay. (OpenMath however does not
mandate that an application preserves the attributes or their order.)

The syntactic class of an attributed variable is variable, and that of all other attributed
objects is object. In particular, an attributed symbol is an object.

Objects can be decorated in a multitude of ways. In Deliverable [6], typing of OpenMath
objects is expressed by using an attribution. attribution(A4,type t) is a way to store that
object A has type t. Note that both A and ¢t are OpenMath objects.

Error Error objects might consist only of a symbol as in the object: error(S). Such errors are
typically unrelated to any OpenMath object and occur for instance during communication.

3.3 Summary

e OpenMath supports basic objects like integers, symbols, floating-point numbers, character
strings, bytearrays, and variables.

e OpenMath compound objects are of four kinds: applications, bindings, errors, and attri-
butions.

e OpenMath objects have the expressive power to cover all areas of computational mathe-
matics.

The OpenMath Standard (Task: 1.3) Page 13 of 49

Chapter 4

OpenMath Encodings

In this chapter, two encodings are defined that map OpenMath objects to byte streams. These
byte streams constitute a low level representation that can be easily exchanged between processes
(via almost any communication method) or stored and retrieved from files.

The first encoding uses ISO 646:1983 characters [1] (also known as Asci characters) and is
an XML application. Although the XML markup of the encoding uses only ASciI characters,
OpenMath strings may uses arbitrary Unicode/ISO 10646:1988 characters [9] It can be used, for
example, to send OpenMath objects via e-mail, news, cut-and-paste, etc. The texts produced
by this encoding can be part of XML documents.

The second encoding is a binary encoding that is meant to be used when the compactness of the
encoding is important (interprocess communications over a network is an example).

Note that these two encodings are sufficiently different for autodetection to be effective: an
application reading the bytes can very easily determine which encoding is used.

4.1 The xML Encoding

This encoding has been designed with two main goals in mind:

1. to provide an encoding that uses the most common character set (so that it can be eas-
ily included in most documents and transport protocols) and that is both readable and
writable by a human.

2. to provide an encoding that can be included (embedded) in XML documents.

This encoding is rather simple and straightforward (except, maybe, for character strings). The

main problem is to cope with the lexical and syntactic constraints of XML [10]. The latter implies
escaping some characters.

4.1.1 A Grammar for the XML Encoding

The syntax of the XML encoding is more restrictive than the XML syntax. Literal values for
attributes must always be enclosed between quotation marks ("). Apostrophe characters (?)

Page 14 of 49

ESPRIT project 24969: OpenMath

are not allowed as enclosure characters, that is <OMS cd = "transc" name ="sin"/> but not
<0MS cd = ’transc’ name =’sin’/>. The character set is restricted to AScii. This encoding is
case sensitive for element and attribute names: neither <omv name="x"/>nor <OMV NAME="x"/>
could be recognized. These restrictions are given to ease the writing of OpenMath applications.
As this encoding will be produced mainly by programs and not humans, these restrictions have
no practical drawbacks.

The notation used in this section and in Figure 4.1 should be quite straightforward (+ meaning
“one or more”, ? meaning zero or one, and | meaning “or”). The start symbol of the grammar
is “start”, “space” stands for the space character, “cr” for the carriage return character, “nl” for
the line feed character and “tab” for the horizontal tabulation character.

S — (space|tab|cr|nl)+
integer — -7[0-9]+ | -7x[0-9A-F]+
cdname — [a-z][a-z0-9_]*
symbname — [A-Za-z][A-Za-z0-9_]*
fpdec — (=D)([0-9]+)?(.[0-9]+)?(e([*+]-]")[0-9]+)?
fphex — [0-9ABCDEF]+
utf7 — ([A-Za-z0-9+=> () ,-./:?21"#$%x;e[1"_<{1}] | 9)+
varname — ([A—Za—zO—9+=’ (),—./:?!#$%*;@[]”_‘{I}])+
base64 — ([A-Za-z0-9+/=] | S)+
start —> <0OMOBJ> S? object S? </0MOBJ>
symbol —> <0OMS S name S? = S "symbname" S? cd S? = S? "cdname" S? />
| <OMS S cd S? = S? "cdname" S? name S? = S? "symbname" S? />
variable = — <OMV S name S? = S? "varname" S? />
| <OMATTR> S? <OMATP> attrs S? </OMATP> S? variable S? </OMATTR>
object — symbol
| variable
| <OMI> S integer S </OMI>
| <OMF S dec S? = S? "fpdec" S? />
| <OMF S hex S? = S? "fphex" S? />
| <OMSTR> S utf7 S </OMSTR>
| <OMB> S base64 S </0MB>
| <OMA> S? object S? objects S? </0MA>
| <OMBIND> S? object S? <OMBVAR> S? variables S? </OMBVAR> S? object S? </0OMBIND>
| <0ME> S? symbol S? objects S? </0ME>
| <OMATTR> S? <OMATP> S? attrs S? </OMATP> S7? object S? </OMATTR>
attrs —> symbol S? object
|

symbol S? object S? attrs
objects — S?

| object S? objects
variables — S?

| variable S? variables

Figure 4.1: Grammar for the XML encoding of OpenMath objects.

The OpenMath Standard (Task: 1.3) Page 15 of 49

ESPRIT project 24969: OpenMath

The document type definition corresponding to this grammar is given in Figure 4.2.

4.1.2 Description of the Grammar

An encoded OpenMath object is placed inside an OMOBJ element. This element can contain the
elements (and integers) as described above.

We briefly discuss the XML encoding for each type of OpenMath object starting from the basic
objects.

Integers are encoded using the OMI element around the sequence of their digits in base 10 or
16 (most significant digit first). Integers written in base 10 satisfy the regular expression
-7[0-9]+. Integers written in base 16 satisfy -7x[0-9A-F]+.

The integer 10 can be thus encoded as:

<0OMOBJ>
<0OMI> 10 </0OMI>
</0MOBJ>

or as:

<0OMOBJ>
<0OMI> xA </0OMI>
</0M0OBJ>

but neither <OMI> +10 </0MI> nor <OMI> +xA </O0MI> can be used.

The negative integer -120 can be encoded as:

<0OMOBJ>
<0MI> -120 </0MI>
</0MOBJ>

or as:

<0OMOBJ>
<OMI> -x78 </0MI>
</0MOBJ>

Symbols are encoded using the OMS element. This element has two XML-attributes cd and name.
The value of cd is the name of the Content Dictionary in which the symbol is defined and
the value of name is the name of the symbol. The name of the Content Dictionary is
compulsory, but a future revision of the OpenMath standard might introduce a defaulting
mechanism. For example, <OMS cd="transc" name="sin"/>is the encoding of the symbol
named sin in the Content Dictionary named transc.

Variables are encoded using the OMV element, with only one XML-attribute, name, whose value
is the variable name. The variable name is a subset of the UTF-7 set of characters. In
particular, neither spaces nor double-quote " are allowed in variable names. For instance,
the encoding of the object representing the variable z is:

Page 16 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969

: OpenMath

<!-- DTD for OM Objects - sb 29.10.98 -—>
<!-- sb 3.2.99 -->

<!--
general list of embeddable elements
: excludes OMATP as this is only embeddable in OMATTR
: excludes OMBVAR as this is only embeddable in OMBIND
-—=>

<!ENTITY % omel "OMS | OMV | OMI | OMB | OMSTR
| OMF | OMA | OMBIND | OME
| OMATTR ">

<!-- things which can be variables -->
<!ENTITY % omvar "OMV | OMATTR" >

<!-- symbol -->
<!ELEMENT OMS EMPTY>
<!ATTLIST OMS name CDATA #REQUIRED
cd CDATA #REQUIRED >

<!-- variable -->
<!ELEMENT OMV EMPTY>
<!'ATTLIST OMV name CDATA #REQUIRED >

<!-- integer -->
<!ELEMENT OMI (#PCDATA) >

<!-- byte array -->
<!ELEMENT OMB (#PCDATA) >

<!-- string -->
<!ELEMENT OMSTR (#PCDATA) >

<!-- floating point -->
<!ELEMENT OMF EMPTY>
<!ATTLIST OMF dec CDATA #IMPLIED
hex CDATA #IMPLIED>

<!-- apply constructor -->
<!ELEMENT OMA (%omel;)+ >

<!-- binding constructor & variable -—>
<!ELEMENT OMBIND ((%omel;), OMBVAR, (%omel;)) >
<!ELEMENT OMBVAR (%omvar;)+ >

<!-- error -->
<!ELEMENT OME (OMS, (%omel;)*) >

<!-- attribution constructor & attribute pair constructor -->
<!ELEMENT OMATTR (OMATP, (%omel;)) >
<!ELEMENT OMATP (OMS, (%omel;))+ >

<!-- 0OM object constructor -->
<!ELEMENT OMOBJ (%omel;) >

The OpenMath StadtigarerdsR: 18D for the OpenMath XML encoding of objects.

Page 17 of 49

ESPRIT project 24969: OpenMath

<0MOBJ>
<OMV name="x"/>
</0MOBJ>

Floating-point numbers are encoded using the OMF element that has either the XML-attribute
dec or the xML-attribute hex. The two XML-attributes cannot be present simultaneously.
The value of dec is the floating-point number expressed in base 10, using the common
syntax:

(-?) ([0-91+)7("."[0-9]1+) 7 (e(-7) [0-9]+) 7.

The value of hex is the digits of the floating-point number expressed in base 16, with digits
0-9, A-F (mantissa, exponent, and sign from lowest to highest bits) using a least significant
byte ordering. For example, <OMF dec="1.0e-10"/>is a valid floating-point number.

Character strings are encoded using the OMSTR element. Its content is a Unicode text (The
default encoding is utf§[?], although XML encoded OpenMath may be embedded in a
containg XML document that specifies alternative encoding in the XML declaration. Note
that as always in XML the characters < and & need to be represented by the entity references
< and &.

Bytearrays are encoded using the OMB element. Its content is a sequence of characters that is
a base64 encoding of the data. The base64 encoding is defined in RFC 1521 [4]. Basically,
it represents an arbitrary sequence of octets using 64 “digits” (A through Z, a through z,
0 through 9, + and /, in order of increasing value). Three octets are represented as four
digits (the = character for padding to the right at the end of the data). All line breaks and
carriage return, space, form feed and horizontal tabulation characters are ignored. The
reader is refered to [4] for more detailed information.

The XML encoding of compound OpenMath objects is described here below.

Applications are encoded using the OMA element. The application whose root is the OpenMath
object eg and whose arguments are the OpenMath objects ey, ..., e, is encoded as <OMA>
Co Ci...C,, </0MA> where C; is the encoding of e;.

For example, application(sin, z) is encoded as:

<0OMOBJ><0OMA>
<0MS cd="transc" name="sin"/>
<0MV name="x"/>
</0MA>

</0MOBJ>

provided that the symbol sin is defined to be a function symbol in a Content Dictionary
named transc.

Binding is encoded using the OMBIND element. The binding by the OpenMath object b of the

OpenMath variables %1, x2, ..., £, in the object ¢ is encoded as <OMBIND> B <OMBVAR>
X, ... X, </OMBVAR> C </OMBIND> where B, C, and X; are the encodings of b, ¢ and z;,
respectively.

For instance the encoding of binding(lambda, z, application(sin, z)) is:

Page 18 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

<0OMOBJ><0OMBIND>
<0MS cd="fns" name="lambda'"/>
<0OMBVAR><0OMV name="x"/></0MBVAR>
<0OMA><0MS cd="transc" name="sin"/>

<0MV name="x"/>

</0MA>
</0MBIND>

</0MOBJ>

Binders are defined in basic Content Dictionaries, in particular, the symbol lambda is
defined in the Content Dictionary fns for functions over functions.

Attributions are encoded using the OMATTR element. If the OpenMath object e is attributed
with (s1, e1), ..., (8n, €5) pairs (where s; are the attributes), it is encoded as <OMATTR>
<OMATP> S; C; ... S, C, </OMATP> E </OMATTR> where S; is the encoding of the symbol
si, C; of the object e; and E is the encoding of e. Note that it is a deliberate decision to
put the attributes before the attributed expression in the encoding.

Examples are the use of attribution to decorate a group by its automorphism group:

<0MOBJ><OMATTR>
<OMATP>
<0OMS cd="groups" name
[..group-encoding..]
</OMATP>
[..graph-encoding..]
</OMATTR>
</0MOBJ>

="automorphism_group" />

or to express the type of a variable:

<0OMOBJ><0OMATTR>
<0OMATP>
<0MS cd="ecc" name="type" />
<0MS cd="ecc" name="real" />
</0OMATP>
<0MV name="x" />
</0MATTR>
</0MOBJ>

Errors are encoded using the OME element. The error whose symbol is s and whose arguments
are the OpenMath objects e1, ..., e, is encoded as <OME> Cy C;...C,, </0ME> where C
is the encoding of s and C; the encoding of e;.

For instance, the encoding of the object error(DivisionByZero, application(divide, z,0))
is:

<0MOBJ><0ME>
<OMS cd="arith" name="DivisionByZero"/>
<0OMA>
<0MS cd="arith" name="divide" />
<0MV name="x"/>

The OpenMath Standard (Task: 1.3) Page 19 of 49

ESPRIT project 24969: OpenMath

<O0MI> 0 </0OMI>
</0MA>
</0ME>
</0MOBJ>

4.2 The Binary Encoding

The binary encoding was essentially designed to be more compact than the XML encodings, so
that it can be more efficient if large amounts of data are involved. For the current encoding,
we tried to keep the right balance between compactness, speed of encoding and decoding and
simplicity (to allow a simple specification and easy implementations).

4.2.1 A Grammar for the Binary Encoding

Figure 4.3 gives a grammar for the binary encoding. The following conventions are used in
this section: [n] denotes a byte whose value is the integer n (n can range from 0 to 255), {m}
denotes four bytes representing the (unsigned) integer n in network byte order, [.] denotes an
arbitrary byte, {_} denotes an arbitrary sequence of four bytes. name:n denotes a sequence of n
bytes named name. name:2n denotes a sequence of 2n bytes. “start” is the start symbol of the
grammar.

4.2.2 Description of the Grammar

An OpenMath object is encoded as a sequence of bytes starting with the begin object tag (value
24) and ending with the end object tag (value 25). These are similar to the <OMOBJ> and
</0MOBJ> tags of the XML encoding.

The encoding of each kind of OpenMath object begins with a tag that is a single byte, holding
a token identifier and two flags, the long flag and the shared flag. The identifier is stored in the
first 6 bits (1 to 6). The long flag is the eighth bit and the shared flag is the seventh bit.

Here is a description of the binary encodings of every kind of OpenMath object:.

Integers are encoded depending on how large they are. There are four possible formats. Integers
between -128 and 127 are encoded as the small integer tag (1) followed by a single byte that
is the value of the integer (interpreted as a signed character). For example 16 is encoded
as 0x01 0x10. Integers between —23! (-2147483648) and 23! —1 (2147483647) are encoded
as the small integer tag with the long flag set followed by the integer encoded in little
endian format on four bytes (network byte order: the most significant byte comes first).
For example, 128 is encoded as 0x81 0x00000080. The most general encoding begins with
the big integer tag (token identifier 2) with the long flag set if the number of bytes in the
encoding of the digits is greater or equal than 256. It is followed by the length (in bytes) of
the sequence of digits, encoded on one byte (0 to 255, if the long flag was not set) or four
bytes (network byte order, if the long flag was set). It is then followed by a byte describing
the sign and the base. This ’sign/base’ byte is + (0x2B) or - (0x2D) for the sign ored
with the base mask bits that can be 0 for base 10 or 0x40 for base 16. It is followed by
the strings of digits (as characters) in their natural order (as in the XML encoding). For

Page 20 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

start
object

[24] object [25]

integer

float

variable

symbol

string

bytearray

construct

1] [

1+ 128 {}

2] [n] [] digits:n

+ 128] {n} [] digits:n
{3}

[n] varname:n

+ 128] {n} varname:n
+ 64] [n]

integer

variable

symbol] [n] [m] cdname:n symbname:m

128] {n} {m} cdname:n symbname:m
64) [n]

] [n] chars:m

+ 128] {n} chars:n

)

5

5

8

8 +
8 +
6

6

7] [n] chars:2n
7

7

4

4

1

2

1

2

string

+ 128] {n} chars:2n
+ 64] [n]

] [n] bytes:n

+ 128] {n} bytes:n

H
H

|

|

|

|

|

|
H

|

|

|
float —
H

|

|
_)

|

|
_)

|

|

|

|
H

bytearray

construct — 6] object objects [17]

| 2] symbol objects [23]

| 8] attrpairs object [19]

| 6] object bvars object [27]
attrpairs — [20] pairs [21]
pairs — symbol object

| symbol object pairs

bvars — [28] vars [29]
vars —+ variable
| variable vars

objects —
| object objects

Figure 4.3: Grammar of the binary encoding of OpenMath objects.

The OpenMath Standard (Task: 1.3) Page 21 of 49

ESPRIT project 24969: OpenMath

example, 8589934592 (233) is encoded 0x02 0x0A 0x2B 0x38353839393334353932 and
xfftffff1 is encoded as 0x02 0x08 0x6b 0x6666666666666631. Note that it is permitted
to encode a “small” integer in any “bigger” format.

Symbols are encoded as the symbol tag (8) with the long flag set if the maximum of the length
of the Content Dictionary name and the symbol name is greater than or equal to 256 (note
that this should never be the case if the rules on symbols and Content Dictionary names
are applied), then followed by the length of the Content Dictionary name as a byte (if
the long flag was not set) or a four byte integer (in network byte order) followed by the
length of the symbol name as a byte (if the long flag was not set) or a four byte integer (in
network byte order), followed by the characters of the Content Dictionary name, followed
by the characters of the symbol name.

Variables are encoded using the variable tag (5) with the long flag set if the number of bytes
(characters) in the variable name is greater than or equal to 256 (this should never happen
if the rules on variables are followed). Then, there is the number of characters as a byte
(if the long flag was not set) or a four byte integer (in network byte order), followed by
the characters of the name of the variable. For example, the variable x is encoded as 0x05
0x01 0x78.

Floating-point number are encoded using the floating-point number tag (3) followed by eight
bytes that are the IEEE 754 representation [2], most significant bytes first. For example,
0.1 is encoded as 0x03 0x000000000000£03f.

Character string are encoded in two ways depending on whether the string contains 16 bits
(Unicode) characters or not. If the string contains only 8 bits characters, it is encoded
as the one byte character string tag (6) with the long flag set if the number of bytes
(characters) in the string is greater than or equal to 256. Then, there is the number of
characters as a byte (if the length flag was not set) or a four byte integer (in network byte
order), followed by the characters in the string. If the string contains two bytes characters,
it is encoded as the two bytes character string tag (7) with the long flag set if the number of
characters in the string is greater or equal to 256. Then, there is the number of characters
as a byte (if the long flag was not set) or a four byte integer (in network byte order),
followed by the characters (16 bits Unicode).

Bytearrays are encoded using the bytearray tag (4) with the long flag set if the number of
bytes in the number of elements is greater than or equal to 256. Then, there is the number
of elements, as a byte (if the long flag was not set) or a four byte integer (in network byte
order), followed by the elements of the arrays in their normal order.

Applications are encoded using the application tag (16). More precisely, the application of Eq
to Ei... E, is encoded using the application tag (16), the sequence of the encodings of Eg
to E, and the end application tag (17).

Bindings are encoded using the binding tag (26). More precisely, the binding by B of variables
Vi...V, in C is encoded as the binding tag (26), followed by the encoding of B, followed
by the binding variables tag (28), followed by the encodings of the variables V; ...V,
followed by the end binding variables tag (29), followed by the encoding of C, followed by
the end binding tag (27).

Attribution are encoded using the attribution tag (18). More precisely, attribution of the
object E with (S1, Er), ... (Sn, Ey) pairs (where S; are the attributes) is encoded as the
attributed object tag (18), followed by the encoding of the attribute pairs as the attribute
pairs tag (20), followed by the encoding of each symbol and value, followed by the end
attribute pairs tag (21), followed by the encoding of E, followed by the end attributed
object tag (19).

Page 22 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

Error are encoded using the error tag (22). More precisely, Sy applied to E;...E, is encoded
as the error tag (22), the encoding of Sy, the sequence of the encodings of Ey to E, and
the end error tag (23).

Sharing

This binary encoding supports the sharing of symbols, variables and strings (up to a certain
length for strings) within one object. That is, sharing between objects is not supported. A
reference to a shared symbol, variable or string is encoded as the corresponding tag with the
long flag not set and the shared flag set, followed by a positive integer n coded on one byte (0 to
255). This integer references the n + 1-th such sharable sub-object (symbol, variable or string
up to 255 characters) in the current OpenMath object (counted in the order they are generated
by the encoding). For example, 0x48 0x01 references a symbol that is identical to the second
symbol that was found in the current object. Strings with 8 bit characters and strings with 16
bit characters are two different kinds of objects for this sharing. Only strings containing less
than 256 characters can be shared (i.e. only strings up to 255 characters).

4.2.3 Implementation Note

A typical implementation of the binary encoding uses four tables, each of 256 entries, for symbol,
variables, 8 bit character strings whose lengths are less than 256 characters and 16 bit character
strings whose lengths are less than 256 characters. When an object is read, all the tables are
first flushed. Each time a sharable sub-object is read, it is entered in the corresponding table if
it is not full. When a reference to the shared i-th object of a given type is read, it stands for the
i-th entry in the corresponding table. It is an encoding error if the i-th position in the table has
not already been assigned (i.e. forward references are not allowed). Sharing is not mandatory,
there may be duplicate entries in the tables (if the application that wrote the object chose not
to share optimally).

Writing an object is simple. The tables are first flushed. Each time a sharable sub-object is
encountered (in the natural order of output given by the encoding), it is either entered in the
corresponding table (if it is not full) and output in the normal way or replaced by the right
reference if it is already present in the table.

4.2.4 Example of Binary Encoding

As an example of this binary encoding, we can consider the OpenMath object whose XML en-
coding is

<0MOBJ>
<0MA>
<0MS name="times" cd="arith"/>
<0OMA>
<0MS name="plus" cd="arith"/>
<0MV name="x"/>
<OMV name="y"/>
</0MA>
<0OMA>

The OpenMath Standard (Task: 1.3) Page 23 of 49

ESPRIT project 24969: OpenMath

<0MS name="plus" cd="arith"/>
<0MV name="x"/>
<0MV name="z"/>

</0MA>
</0MA>
</0MOBJ>

It is binary encoded as the sequence of bytes given by the following table.

Hex | Meaning Hex | Meaning

18 begin object tag 68 h.)

10 begin application tag 70 p (symbol name begin

08 symbol tag 6¢ 1.

05 cd length 75 u.

05 name length 73 s.)

61 a (cd name begin 05 variable tag

72 r. 01 name length

69 i. 78 x (name)

74 t. 05 variable tag

68 h.) 01 name length

74 t (symbol name begin || 79 y (variable name)

69 i. 11 end application tag

6d m . 10 begin application tag

65 e. 48 symbol tag (with share bit on)
73 S . 01 reference to second symbol seen (arith:plus)
10 begin application tag 45 variable tag (with share bit on)
08 symbol tag 00 reference to first variable seen (x)
05 cd lenght 05 variable tag

04 name length 01 name length

61 a (cd name begin 7a z (variable name)

72 r. 11 end application tag

69 i. 11 end application tag

74 t. 19 end object tag

4.2.5 Summary

The key points of this chapter are:

e The XML encoding for OpenMath objects uses most common character sets.

e The XML encoding is readable, writable and can be embedded in most documents and

transport protocols.

e The binary encoding for OpenMath objects should be used when efficiency is a key issue.

It is compact yet simple enough to allow fast encoding and decoding of objects.

Page 24 of 49

The OpenMath Standard (Task: 1.3)

Chapter 5

Content Dictionaries

In this chapter we give a brief overview of Content Dictionaries before explicitly stating their
functionality and encoding.

5.1 Introduction

Content Dictionaries (CD’s) are central to the OpenMath philosophy of transmitting mathemat-
ical information. It is the OpenMath Content Dictionaries which actually hold the meanings of
the objects being transmitted.

For example if application A is talking to application B, and sends, say, an equation involving
multiplication of matrices, then A and B must agree on what a matrix is, and on what matrix
multiplication is, and even on what constitutes an equation. All this information is held within
some Content Dictionaries which both applications agree upon.

Key notion: A Content Dictionary holds the meanings of (various) mathematical “words”.
These words are referred to as symbols.

With a set of symbol definitions (perhaps from several content dictionaries), A and B can now
talk in a common “language”.

It is important to stress that it is not Content Dictionaries themselves which are being passed, but
some “mathematics” whose definitions are held within the Content Dictionaries. This means
that the applications must have already agreed on a set of Content Dictionaries which they
“understand” (i.e., can cope with to some degree).

For the vast majority of cases it is thought that the Content Dictionaries that an application
understands will be constant, and be intrinsic to the applications’ mathematical use. However
the above approach can also be used for applications which supposedly understand every Content
Dictionary, or alternatively for applications which understand a changeable number of Content
Dictionaries (perhaps after being sent Content Dictionaries in some way).

The last paragraph brings up interesting issues regarding the use of Content Dictionaries. The
primary use is thought to be for designers of Phrasebooks. (Phrasebooks are programs which
translate between the OpenMath mathematical object and the corresponding (often internal)
structure of the particular application in question). For such a use the Content Dictionaries have

Page 25 of 49

ESPRIT project 24969: OpenMath

themselves been designed to be as readable and precise as possible, to enable the Phrasebook
designer to effectively state which objects translate to which.

Another possible use for OpenMath Content Dictionaries could rely on their automatic com-
prehension by a machine (e.g., when given definitions of objects defined in terms of previously
understood ones), in which case Content Dictionaries may have to be passed as data. Towards
this end, a Content Dictionary has been written which contains a set of symbols sufficient to
represent any other Content Dictionary. This means that Content Dictionaries may be passed
in the same way as other (OpenMath) mathematical data.

Finally, the syntax of the Content Dictionaries has been designed to be relatively easy to learn
and to write, and also free from the need for any specialist software. This is because it is
acknowledged that there is an enormous amount of mathematical information to represent, and
so most of the Content Dictionaries will be written by “ordinary” mathematicians, encoding
their particular fields of expertise.

The key points from this section are:

e Content Dictionaries should be readable and precise to help Phrasebook designers,
e Content Dictionaries should be readily write-able to encourage widespread use,

e It ought to be possible for a machine to understand a Content Dictionary to some degree.

5.2 Content Dictionary functionality

In this section we define the functionality of the Content Dictionaries.

Other than Content Dictionary comments (which have no real semantics), Content Dictionaries
have been designed to hold two types of information: that which is pertinent to the whole
Content Dictionary, and that which is restricted to a particular symbol definition.

Information that is pertinent to the whole Content Dictionary includes:

e The name of the Content Dictionary.
e A description of the Content Dictionary.
e A date when the Content Dictionary is next planned to be reviewed.

e A date on which the Content Dictionary was last edited.

the version number of the current version of the Content Dictionary.

The status of the Content Dictionary, which is one of the following

— official (approved by the OpenMath society)
— experimental (currently being tested)

private (used by a private group of OpenMath users)
— obsolete (an obsolete Content Dictionary kept only for archival purposes)

An optional URL for this Content Dictionary.

An optional list of Content Dictionaries which this Content Dictionary depends on (pro-
ducing a Content Dictionary hierarchy).

Page 26 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

The optional arguments above are only optional in the sense that their information may not
exist; if it does however, it must be present.

Information that is restricted to a particular symbol includes:

e The name of the symbol.
e A description of this symbol.

e Optional examples of the use of this symbol. The information present here can be any
valid XML .

e Optional properties that this symbol should obey. Properties can one of two cases:

— formal (i.e. completely in terms of other OpenMath objects), or
— commented (i.e. just valid XML text).

An application which says it understands a Content Dictionary symbol need not understand
a property of the symbol, but if it does, then the application must adhere to this property.

e Default presentation information. This is included since a large proportion of mathematics
will require rendering, and it is thought that OpenMath should not completely distance
itself from this.

Since the previous description of Content Dictionaries, FunctorClass and Part0f have been
deleted; such information should be conveyed elsewhere, e.g., in the descriptions. CDExpire has
been given the more meaningful name CDReviewDate and the date format has been made ISO
compliant.

Also Signature information that was previously was provided in the Content Dictionaries is now
described in Signature Files described in section 5.4 below.

Content Dictionaries may be grouped into CD Groups. These groups allow applications to easily
refer to collections of Content Dictionaries. One particular CD Group of interest is the “MathML
CD Group”. This group expresses the collection of the core Content Dictionaries that is designed
to have the same semantic scope as the content elements of MathML. OpenMath objects built
from symbols that come from Content Dictionaries in this CD Group may be expected to be
eaily transformed between OpenMath and MathML encodings. The detailed structure of a CD
Group is described in section 5.5 below.

5.3 An encoding for Content Dictionaries

The encoding for Content Dictionaries has been designed to be totally valid XML, at the same
time as being relatively easy to read and write. A valid Content Dictionary document should be

e parsable by the DTD given in Figure 5.1,

e adhere to the stricter definitions of the parsed character data, PCDATA for short, given
in section 5.3.2.

We now explain exactly what these conditions mean for the encoding of Content Dictionaries,
and give examples of sub-encodings. An example of a complete Content Dictionary is given in
appendix A, which is a Content Dictionary for describing Content Dictionaries themselves.

The OpenMath Standard (Task: 1.3) Page 27 of 49

ESPRIT project 24969: OpenMath

5.3.1 The DTD specification of a Content Dictionary

The XML DTD for Content Dictionaries is given in Figure 5.1, The allowed elements are further
described in the following section.

5.3.2 Further requirements of an OpenMath Content Dictionary

The notion of being a valid Content Dictionary is stronger than merely being successfully parsed
by the DTD. This is because the PCDATA referred to in Figure 5.1 must actually make sense
to, say, a Phrasebook designer. In this section we define exactly the format of the PCDATA
used in Content Dictionaries.

CDName The text occurring in the CDName element corresponds to the name of Content Dictio-
nary, and is of the form specified in Chapter 4.

CDURL The text occurring in the CDURL element should be a valid URL where the source for the
Content Dictionary encoding can be found (if it exists). The filename should conform to
ISO 9660 [7].

Example The text occurring in the Example element is used to give examples of the enclosing
symbol, and can be any utf7 text. Note that Examples must be with respect to some
symbol and cannot be “loose” in the Content Dictionary. With the use of inheritance
to reduce verbosity it is suggested that wherever possible, all the examples concerning a
symbol be in with the symbol definition.

CDReviewDate The text occurring in the CDReviewDate element corresponds to the earliest
possible revision date of the Content Dictionary. The date formats should be ISO-compliant
in the form YYYY-MM-DD, e.g. 1953-09-26.

CDDate The text occurring in the CDDate elemet corresponds to the date of this version of the
Content Dictionary. The date formats should be ISO-compliant in the form YYYY-MM-
DD, e.g. 1953-09-26.

CDVersion The text occurring in the CDVersion element corresponds to the version number of
the current version of the Content Dictionary.

CDStatus The text occurring in the CDStatus element corresponds to the status of Content
Dictionary, and can be either official (approved by the OpenMath steering committee),
experimental (currently being tested), private (used by a private group of OpenMath
users) or obsolete (an obsolete Content Dictionary kept only for archival purposes).

CDUses It mentions the names of the Content Dictionaries that are used in the definitions of the
symbols in the current Content Dictionary.

Description The text occurring in the Description element is used to give a description of the
enclosing element, which could be a symbol or the entire Content Dictionary. The content
of this element can be any XML text.

Name The text occurring in the Name element corresponds to the name of the symbol, and is
specified as in Chapter4.

CMP The text occurring in the CMP element corresponds to a property of the symbol.

FMP The content of the FMP element also corresponds to a property of the symbol, however the
content of this element must be a valid OpenMath object in the XML encoding.

1 Add discussion about minor and major changes between versions. Minor changes do not invalidate objects
built with previous versions, viceversa for major changes.

Page 28 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

<!-- omcd.dtd -->

V== ook ook skl ok sk kok ok sk sk ok ok ksl sk sk ok sk sk sk ok ko dokok ok ——>
<t-- -
<!-- DTD for OpenMath CD -=>
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -—>
<!-- date = 28.aug.1998 -=>
<!-- author = s.buswell sb@stilo.demon.co.uk -->
<t-- -
<!-- edited by n.howgrave-graham 30.aug.98 -=>
<!-- edited by sb 4.sep.98 -=>
<!-- edited by nh-g 4.sep.98 -->
<!-- edited by sb 1.nov.98 -->
<!-- edited by sb 1.nov.98 -=>
<!-- edited by dpc 1999-04-13 -=>
<!-- edited by dpc 1999-05-11 CDDate & CDVersion -->
<1-- -
<1-- -
V== sokokaiokok sk ko e ksl ke ksl ok ksl ok ko o sk ek ok e ksl ok ek sk ok ok ok ok ==
<!ELEMENT CDComment (#PCDATA) >

<!ELEMENT CDName (#PCDATA) >

<!ELEMENT CDURL (#PCDATA) >

<!ELEMENT CDUses (CDName) * >

<!ENTITY % inhel " (#PCDATA)" >

<!ENTITY % inhel2 "(#PCDATA | OMOBJ)*" >
<!ELEMENT CDReviewDate %inhel; >

<!ELEMENT CDDate %inhel; >

<!ELEMENT CDVersion %inhel; >

<!ELEMENT CDStatus %inhel; >

<!ELEMENT Description %inhel; >

<!ELEMENT Name %inhel; >

<!ELEMENT Signature %inhel; >

<!ELEMENT Presentation %inhel; >

<!ELEMENT CMP %inhel; >

<!-- include dtd for OM objects -->
<!ENTITY J omobjectdtd SYSTEM "omobj.dtd" >
%omobjectdtd;

<!ELEMENT FMP %inhel2; > <!-- allow embedded OM -->

<!ELEMENT Example %inhel2; >

<!ELEMENT CDDefinition (CDComment | Name | Description

Signature | Example | FMP |
CMP | Presentation)* >

<!ELEMENT CD (CDComment | CDName | Description |

Example) * >

CDReviewDate | CDDate |CDVersion |
CDStatus | CDURL | CDUses | CDDefinition |

<!-- end of DTD for OM CD —-->

Figure 5.1: DTD of OpenMath Content Dictionaries

The OpenMath Standard (Task: 1.3) Page 29 of 49

ESPRIT project 24969: OpenMath

5.4 Content Dictionary Signature Files

Early drafts of the OpenMath standard specified that Content Dictionaries had a Signature
element in which the signature of the symbol was defined. The disadvantage of this approach is
that the signature would need to be reference to a specific type system. However OpenMath may
be used with any Type System. One just needs to produce a Content Dictionary which gives
the constructors of the type system, and then one may build OpenMath objects representing
types in the given type system. These are typically associated with OpenMath objects via the
OpenMath Attribution constructor.

Signature files have a header which specifies the Content Dictionary which determines the type
system being used, and the Content Dictionary which contains the symbols for which the signa-
tures are being given. Each signature takes the form of an XML encoded OpenMath object.

The exact syntax for the signature file is specified in the following XML DTD.

5.4.1 XML DTD for Signature Files

<!-- omcds.dtd -->

V== sokokaieook ook ksl ke ksl kol o ek o ok sk sk o ek sk e ko o ko ok kok ——>
<1-- -—>
<!-- DTD for OpenMath CD Signatures -=>
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -=>
<!-- David Carlisle 1999-04-13 -—>
<!-- -=>
<!-- -=>
V== sokskakolok ookl kol ook ok koo ko sk koo ook okokokokok ——>

<!-- include dtd for OM objects -->
<!ENTITY % omobjectdtd SYSTEM "omobj.dtd" >

%omobjectdtd;

<!ELEMENT CDComment (#PCDATA) >
<!ELEMENT CDSReviewDate (#PCDATA) >
<!ELEMENT CDSStatus (#PCDATA) >

<!ELEMENT CDSignatures (CDComment |CDSComment | CDSReviewDate |
CDSStatus | signature)* >

<'ATTLIST CDSignatures cd CDATA #REQUIRED
type CDATA #REQUIRED >

<!ELEMENT Signature (0OMOBJ) >
<!ATTLIST Signature name CDATA #REQUIRED >

<!-- end of DID for OM CD Signatures -->

Page 30 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

5.5 Content Dictionary Groups

A CD Group file is an XML document that essentially has header information such as CDGroup-
Name and CDGroup version, analogous to the elements in CD files described above. Then follows
a list of Content Dictionaries names, and optionally URLs to canonical copies of the Content
Dictionaries, and comments elements.

The exact format of the CD Group file is specified by the XML DTD given in the next section.

5.5.1 XML DTD for CDGroup Files

<!-- CDgroup.dtd -->

V== ook ook ksl ok sk skok ok sk sk ok ok sk sk sk ke sk sk sk skskok kokok ok ——>
<lt-- -—>
<!-- DTD for OpenMath CD group -=>
<!-- (c) EP24969 the ESPRIT OpenMath Consortium -—>
<!-- date = 18.Feb.1999 -=>
<!-- author = s.buswell sb@stilo.demon.co.uk -—>
<t-- -—>
<t-- -—>
<!-- available at -=>
<!-- http://www.nag.co.uk/ something here David~ -->
<1 -
V== sokokaookok ook kol ok sk skok ok sk ok ok sk sk sk ok sk sk sk ok skoskok kokok ok ——>
<!-- info on the CD group itself -->

<!ELEMENT CDGroupName (#PCDATA) >

<!ELEMENT CDGroupVersion (#PCDATA) >

<!ELEMENT CDGroupURL (#PCDATA) >

<!ELEMENT CDGroupDescription (#PCDATA) >

<!-- info on the CDs in the group -->

<!ELEMENT CDComment (#PCDATA) >

<!ELEMENT CDGroupMember (CDName, CDVersion?, CDURL?) >

<!ELEMENT CDName (#PCDATA) >
<!ELEMENT CDVersion (#PCDATA) >
<!ELEMENT CDURL (#PCDATA) >
<!-- structure of the group -—>

<!ELEMENT

CDGroup (CDGroupName, CDGroupVersion, CDGroupURL,

CDGroupDescription,
(CDGroupMember | CDComment)*) >

<!-- end of DTD for OM CDGroup -->

The OpenMath Standard (Task: 1.3)

Page 31 of 49

Chapter 6

OpenMath Compliance

EDITORIAL NOTE: THIS CHAPTER IS CUT&PASTED FROM THE OM VERSION 1 DRAFT OF
THE STANDARD AVAILABLE AT THE INRIA OPENMATH SITE. IT IS HERE JUST AS FOOD FOR
THINKING.

An OpenMath application can be defined as any program that is capable of accepting and/or
generating any of the encodings for OpenMath objects described in this document.

This requirement is enough to enable two OpenMath applications to exchange mathematical
objects. It is enough to write a function in a computer algebra system that would read an
OpenMath object from a file and translate it to its own representation and conversely, to write
an object of the system to a file so that it can be read back by another OpenMath application.
Nevertheless, it does not specify how an application is supposed to treat the OpenMath object,
how it is supposed to react to various error conditions and how an “on-line” communication can
be established between two (or more) applications. This section is dedicated to answer some
of these questions. More precisely, we are going to describe additional requirements at several
levels, that can be viewed as representing increasing levels of cooperation between applications:

1. Additional rules an OpenMath application must follow regarding the OpenMath objects it
can read and write. This is independent of any other application or form of communication.
It is just some very basic requirements on how an application should treat symbols and
content dictionaries.

2. In a context where an OpenMath application A can send an OpenMath object to another
application B and B can send another object to A, constraints on what B can send in
response to what A send. At this level, we are mostly concerned about how common errors
must be reported.

3. In a context where two OpenMath applications A and B have established a communication
channel enabling them to exchange OpenMath objects, constraints on the sequence of
OpenMath objects exchanged between them.

4. In the context of two applications A and B that want to communicate, methods to establish
the communication.

All these requirements are layered. An application following the fourth set must follow the first,
second and third sets of rules.

Page 32 of 49

ESPRIT project 24969: OpenMath

The first set of rules must be followed by any OpenMath application. In this sense this is the
base level for OpenMath compliance. For example, a computer algebra system that can only
read an OpenMath object from a file or export an OpenMath object to a file must follow them.
In fact, level 1 can be applied even to applications that do not use the encodings defined in this
document, for example applications using CORBA or OLE to transport OpenMath objects in
their own formats.

The second set must be followed in a simple, single request/response scenario. For example, it
applies to the same computer algebra system that would have a “batch mode” where it reads
an OpenMath object and output some result as another OpenMath object, or for a Remote
Procedure Call OpenMath server (independently of the technology used for the remote procedure
call itself).

The third set is to be used in situations where a real communication is established, with a
sequence of request /response. It does not say anything about the way the “physical” communi-
cation has been established.

The fourth set is describing some standard methods to establish the communication. These
methods are largely operating-system dependent. They enable an OpenMath application to call
(or to find) another OpenMath application.

The goal of these rules is to simplify the building of OpenMath applications and their use while
being adapted to the largest number of communication methods and technologies.

6.1 Level 1: How an Application Must Behave with Re-
spect to Content Dictionaries

In this section, we describe how an OpenMath application must behave with respect to some
content dictionaries. An OpenMath application must always come with:

e A list of the content dictionaries it can deal with as input (the names of the CD or the CD
themselves if they are not public, official CD)

e A list of the symbols from these content dictionaries that it will not handle (see 7.2.1),
e A list for the content dictionaries it uses in its outputs

In addition, an application should mention whether or not it is able to handle objects containing
arbitrary symbols.

The content dictionaries basically define what parts of mathematics the application understands
and produces. An application must follow all the requirements and constraints given in all
the dictionaries it explicitly mentions when it uses (reads, manipulate and outputs) OpenMath
objects containing symbols defined in these dictionaries.

There are useful OpenMath applications that can accept symbols from any dictionary. One such
(trivial) example is an application converting an OpenMath object stored in a file in the binary
encoding to the text encoding. We can also envisage applications that do some useful things with
some CD but can potentially accept objects containing symbols from any CD. A good example
is an application that typesets OpenMath objects. This application will certainly treat some
symbols in some ad-hoc ways and revert to some default printing for the symbols it does not
know about. For this reason, we cannot force an OpenMath application to always detect all

The OpenMath Standard (Task: 1.3) Page 33 of 49

ESPRIT project 24969: OpenMath

violations of semantic constraints (given in CD) in all the OpenMath objects it reads or writes
(but it must do so for the symbols in the CD that it explicitly mentions).

As OpenMath is all about communicating mathematical objects and not requesting computa-
tions, it is usually not possible to impose a particular computational behavior to an OpenMath
application receiving a particular OpenMath object. For example, the same OpenMath object
can be given to both an equation editor and a symbolic computation system. The specification of
how an OpenMath application should behave is thus largely outside of the scope of the informa-
tion attached in an OpenMath CD, although the CD can mention some mandatory behaviours
for certain kind of applications. For example, in the case of a symbol representing factorization
of integers, it is very useful to specify what kind of OpenMath object an OpenMath application
that can compute this factorization is supposed to return.

6.2 Level 2: Simple Communication

Here, we attempt to define how an OpenMath application should behave in the context of a very
crude level of communication: in the context of a single sequence of request/response.

In this context, the application that receives the request (an OpenMath object) is required to
send back an OpenMath object that represents the response (provided the application is still
functional...). The request and the response must use the same encoding. If an error occurs, the
response should be an OpenMath error. For certain common error conditions, some predefined
symbols in the Control content dictionary should be used, as specified in the sequel.

Partially Implemented Content Dictionaries

An application that claims to understand a content dictionary is supposed to understand the
objects build with the symbols occurring in the CD, following the specification given in the CD.
But this understanding depends on the intended behavior of the application. The application
is not required to treat all the symbols the same way. It is possible that some symbols may
be “unimplemented” by the application. This is in fact necessary to insure that we can write
complete CD that can be used without putting too much constraint on an application.

For example, we can envision an application that computes zeros of functions represented as
algebraic expressions containing special functions. This application can claim to understand the
Basic CD and the SpecialFunction CD. If the SpecialFunction CD is a (sufficiently) exhaustive
CD, it may be the case that the application don’t know how to compute the zeroes of some
functions in this CD. If we insist that the application is denied to claim the understanding of the
SpecialFunction CD in this case, we would end up with a lot of applications defining their own
CD, that would be minor variations of some other or a lot of “non compliant” but very useful
applications.

When an OpenMath application receives an object containing a symbol that is unimplemented,
it should return an error, whose symbol is unhandledSymbol in the Control CD and whose
argument is the unhandled symbol that triggered the error in the last OpenMath object received
(in case there are several such symbol, only one is returned).

Page 34 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

Unknown Symbols and Unknown Content Dictionaries

It is perfectly possible that an application reads an object containing a symbol that does not
exist in the mentioned content dictionary, for example when reading an object coming from a
file written by a human that made a typing error. In this case, the application should return an
error, whose symbol is unknownSymbol in the Control CD and whose argument is the unknown
symbol that triggered the error.

In the case where an unknown content dictionary is present, the application should return an
error, whose symbol is unknownCD in the Control CD and whose argument is a string that is
the name of the unknown dictionary that triggered the error.

In the case where there are several such errors in an OpenMath object, there is no requirement
on which particular unknown or unhandled symbol or content dictionary should be returned
with the error.

6.2.1 Encoding Errors

When an application detects a lexical or syntactic error in a piece of OpenMath encoding that
it has read, it must generate an error, whose symbol is encodingError in the Control CD and
whose argument is a string that should explain the error.

6.2.2 Operational and Implementation Errors

We distinguish the following kinds of common error conditions that may be generated by an
OpenMath application:

1. Errors due to algorithmic restrictions of the implementation. This includes operations not
implemented or partially implemented, division by zero and other domain errors.

2. Errors caused by the limitations of an implementation when dealing with OpenMath ob-
jects, such as limits on the size of objects or on the kind of objects manipulated. This can
include limits on the size of a bytearray or integer, a limit on the number of arguments of
an application or the inability to deal with Unicode characters outside ISO latin 1.

3. Errors caused by unexpected problems (that should never happen).
Three symbols in the Control CD are defined to report these three kinds of errors. They are

1. algorithm
2. limitation
3. unexpected

All these errors have one required argument and one optional argument. The first (mandatory)
one is the symbol that is the a string describing the problem. The second (optional) one is a
symbol that is relevant to the error. It is expected, for example, to be the symbol that triggered
the computation that lead to an algorithm error.

This is just a predefined way to report these kinds of errors for applications that do not want to
use their own conventions. An application is free to use its own way, provided it uses the “error”

The OpenMath Standard (Task: 1.3) Page 35 of 49

ESPRIT project 24969: OpenMath

construct to report errors and that the symbols used in the error object has a proper definition
in its content dictionary.

6.2.3 Asynchronous Errors

A conformant OpenMath application should try to behave in certain ways in response to some
asynchronous errors. What we call asynchronous errors here are errors that are directly connected
with some external conditions, usually limits (not enough memory) or errors in some system calls
(I/O errors,disk full, machine down).

In this case, the application should try to send an error, with the system symbol in the Control
CD with an argument that is a string describing the problem.

6.3 Level 3

The communication has been physically established between two OpenMath applications when
both applications have some means to send encoded OpenMath objects to the other and to
receive an encoded OpenMath object sent by the other.

At this level, the sequence of OpenMath objects exchanged should be strictly request/response
i.e. an application should never attempt to read more than one object without sending an object
back.

An application wishing to terminate the communication should first send the OpenMath symbol
terminate in the Control CD.

If an application detects an error as described at level 2 that it cannot recover from, it is required
to send an error, whose symbol is terminate in the Control CD and whose argument is the error
as specified at level 2. If an application detects an error for which it has defined its own symbol,
it should also encapsulate it in a terminate error as explained above.

6.4 Level 4

OpenMath Clients and Servers in a UNIX Environment

Here, we describe a method that enables an OpenMath application to launch another OpenMath
application and establishing a proper communication channel.

Page 36 of 49 The OpenMath Standard (Task: 1.3)

Chapter 7

Conclusion

The goal of this document is to define the OpenMath standard. The things are addressed by
the OpenMath standard are:

e Informal and formal definition of the OpenMath objects.
e Informal and formal definition of the notion of Content Dictionaries.

To do this, OpenMath objects are precisely defined and two encodings are described to represent
these objects using XML and binary code. Furthermore, the Document Type Definition for
validating Content Dictionaries and OpenMath objects is given.

Page 37 of 49

Appendix A

The Meta Content Dictionary

<CD>

<CDName> meta </CDName>

<CDReviewDate> 1999-09-01 </CDReviewDate>

<CDDate> 1999-05-11 </CDDate>

<CDVersion> 1.1a </CDVersion>

<CDStatus> experimental </CDStatus>

<CDURL> http://openmath.nag.co.uk/Projects/openmath/corecd/cd/meta.ocd </CDURL>

<Description>

This is a content dictionary to represent content dictionaries, so
that they may be passed between OpenMath compliant application in a
similar way to mathematical objects.

The information written here is taken from chapter 4 of the current
draft of the "OpenMath Standard".
</Description>

<CDComment>

First Draft 1998 N. Howgrave-Graham.

Modified 1999-02-13 R Timoney to fix errors and omissions.
Modified 1999-03-28 D Carlisle to change description of Signature.
Rewritten 1999-05-07 D Carlisle.

Modified 1999-05-11 D Carlisle. Added CDDate and CDVersion.
</CDComment>

<CDDefinition>

<Name> CD </Name>

<Description>

The top level element for the Content Dictionary. It just acts
as a container for the elements described below.
</Description>

</CDDefinition>

Page 38 of 49

ESPRIT project 24969: OpenMath

<CDComment>

For those that do not have access to the DTD, the elements
allowed in a Content Dictionary are the following

(in no particular order):

<! [CDATA[

<CD>

<CDName> </CDName>
<Description> </Description>
<CDReviewDate> </CDReviewDate>
<CDDate> </CDDate>
<CDVersion> </CDVersion>
<CDStatus> </CDStatus>
<CDURL>? </CDURL>

<CDUses>? <CDUses>
<CDDefinition>*

<Name> </Name>

<Description>* </Description>
<Signature>? </Signature>
<Example>* </Example>

<FMP>* </FMP>

<CMP>* </CMP>

<Presentation>? </Presentation>
</CDDefinition>

11>

where an asterisk (?) denotes it can repeated O or 1 times, and a star
(*) denotes 0 or more times.
</CDComment>

<CDDefinition>
<Name> CDName </Name>
<Description>

An element which contains the string corresponding to the name of the CD.

Here and elsewhere white space occurring at the begining or end of the
string will be ignored. The string must match the syntax for

CD names given in the OpenMath Standard.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDURL </Name>

<Description>

An optional element.

If it is used it contains a string representing the URI where the
cannonical reference copy of this CD is stored.

</Description>

</CDDefinition>

<CDDefinition>
<Name> Example </Name>
<Description>

The OpenMath Standard (Task: 1.3)

Page 39 of 49

ESPRIT project 24969: OpenMath

An element which contains an arbitrary number of children,
each of which is either a string or an XML encoding of an OpenMath Object.

These children give examples in natural language, or in OpenMath, of the
enclosing symbol definition.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDDate </Name>

<Description>

An element which contains a date as a string in the IS0-8601
YYYY-MM-DD format. This gives the date at which the Content Dictiomary
was last edited.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDVersion </Name>

<Description>

An element which contains a version string for the CD.

This should be of the form 1.2a with the letter just being changed

for "cosmetic" edits to the file, and the major or minor version numbers
being changed for structural changes that affect the OpenMath Objects
that may use this CD.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDReviewDate </Name>

<Description>

An element which contains a date as a string in the IS0-8601
YYYY-MM-DD format. This gives the date at which the Content Dictiomary
is next scheduled for review. It should be expected to be stable

until at least this date.

</Description>

</CDDefinition>

<CDDefinition>

<Name> CDStatus </Name>

<Description>

An element giving information on the status of the CD.
The content of the element must be one of the following.

official (approved by the OpenMath Society),

experimental (currently being tested),

private (used by a private group of OpenMath users), or
obsolete (an obsolete CD kept only for archival purposes).

</Description>
</CDDefinition>

Page 40 of 49 The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

<CDDefinition>

<Name> CDUses </Name>

<Description>

An element which contains zero or more CDNames which correspond

to the CDs that this CD depends on. This makes an inheritance
structure for CDs. If the CD is dependent on any other CDs they must
be present here.

</Description>

</CDDefinition>

<CDDefinition>

<Name> Description </Name>

<Description>

An element which contains a string corresponding to the
description of either the CD or the symbol

(depending on which is the enclosing element).
</Description>

</CDDefinition>

<CDDefinition>

<Name> Name </Name>

<Description>

An element containing the string corresponding to the name of
the symbol being defined. This must match the syntax for
symbol names given in the OpenMath Standard.

</Description>

</CDDefinition>

%#<CDDefinition>

%<Name> Signature </Name>

%#<Description>

%An optional element which contains the XML encoding
%hof an OpenMath object corresponding to

%the type of the symbol being defined.

%#This is not used in the current CD as the signatures are specified
%separately in signature files, to allow different type systems to
%be used.

%#</Description>

%</CDDefinition>

%<CDDefinition>

%<Name> Presentation </Name>

%<Description>

%An optional element (which may be repeated many times) which contains
%a string corresponding to a way of presenting the symbol being defined.
%</Description>

%</CDDefinition>

<CDDefinition>

<Name> CMP </Name>

<Description>

An optional element (which may be repeated many times) which contains

The OpenMath Standard (Task: 1.3) Page 41 of 49

ESPRIT project 24969: OpenMath

a string corresponding to a property of the symbol being
defined.

</Description>

</CDDefinition>

<CDDefinition>

<Name> FMP </Name>

<Description>

An optional element which contains an arbitrary number of children,

each of which is either a string or an XML encoding of an OpenMath Object.

Each child corresponds to to a property of the symbol being defined.
</Description>
</CDDefinition>

</CD>

Page 42 of 49 The OpenMath Standard (Task: 1.3)

Appendix B

The arithl Content Dictionary

<CD>

<CDName> arithl </CDName>

<CDURL> http://openmath.nag.co.uk/Projects/openmath/corecd/cd/arithl.ocd </CDURL>
<CDReviewDate> 1999-09-01 </CDReviewDate>

<CDStatus> experimental </CDStatus>

<CDDate> 1999-06-03 </CDDate>

<CDVersion> 1.0b </CDVersion>

<CDUses> </CDUses>

<Description>

This CD holds very vague notions of common arithmetic functions.
</Description>

<CDComment>

This CD is intended to be ‘compatible’ with MathML.

Written by N. Howgrave-Graham on 1998-07-05.

Modified 1999-02-13 to fix errors and omissioms.
Modified 1999-03-26 to add sum and product
Minor Fixes 1999-04-13 DPC

Added unary_minus 1999-06-03 DPC

</CDComment>

<CDDefinition>
<Name> plus </Name>
<Description>
An nary commutative function plus.
</Description>
<CMP> a + b = b + a </CMP>
<FMP>
<0OMOBJ>
<OMBIND>
<OMS cd="quantl" name="forall"/>
<OMBVAR>
<0MV name="a"/>
<0MV name="b"/>
</0MBVAR>

Page 43 of 49

ESPRIT project 24969: OpenMath

<0MA>
<0MS cd="relationl" name="eq"/>
<0MA>
<OMS cd="arithl" name="plus"/>
<0MV name="a"/>
<0MV name="b"/>
</0MA>
<0OMA>
<OMS cd="arithl" name="plus"/>
<0OMV name="b"/>
<OMV name="a"/>
</0MA>
</0MA>
</0OMBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name> unary_minus </Name>
<Description>
This symbol denoting unary minus. Ie
the additive inverse.
</Description>
<CMP> a + (-a) = 0 </CMP>
<FMP>
<0MOBJ>
<0OMBIND>
<0OMS cd="quant1" name="forall"/>
<0MBVAR>
<OMV name="a"/>
</0OMBVAR>
<0MA>
<OMS cd="relationl" name="eq"/>
<0MA>
<0OMS cd="arithl" name="p1us"/>
<OMV name="a'"/>
<0MA>
<0MS cd="arithil" name="unary_minus"/>
<0MV name="a'"/>
</0MA>
</0MA>
<OMS cd="algl" name="zero"/>
</0MA>
</0OMBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>

<Name> minus </Name>

<Description>

The binary minus symbol. This is equivalent to adding the
additive inverse.

Page 44 of 49

The OpenMath Standard (Task: 1.3)

ESPRIT project 24969: OpenMath

</Description>
<CMP> a - b = a + (-b) </CMP>
<FMP>
<OMOBJ>
<OMBIND>
<0MS cd="quanti" name="forall"/>
<0OMBVAR>
<0MV name="a"/>
<0MV name="b'"/>
</0MBVAR>
<0MA>
<OMS cd="relationl" name="eq"/>
<0OMA>
<0OMS cd="arithl" name="minus"/>
<0OMV name="a"/>
<0OMV name="b"/>
</0MA>
<OMA>
<OMS cd="arithl" name="plus"/>
<0MV name="a"/>
<0MA>
<OMS cd="arithl" name="unary_minus"/>
<0MV name="b"/>
</0MA>
</0MA>
</0MA>
</0OMBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>

<Name> times </Name>

<Description>

This is an n-ary multiplication function.
</Description>

</CDDefinition>

<CDDefinition>
<Name> divide </Name>
<Description>
This is the (binary) division function that denotes the first argument
right-divided by the second, i.e. divide(a,b)=a*inverse(b). It is the
inverse of multiplication function as commented below.
</Description>
<CMP> whenever not(a=0) then a/a = 1 </CMP>
<FMP>
<0MOBJ>
<OMBIND>
<0MS cd="quant1" name="forall"/>
<OMBVAR>
<OMV name="a"/>
</0OMBVAR>
<0MA>

The OpenMath Standard (Task: 1.3)

Page 45 of 49

ESPRIT project 24969: OpenMath

<OMS cd="logicl" name=“imp1ies"/>
<0MA>
<OMS cd="relationl" name='"neq"/>
<OMV name="a'"/>
<OMS cd="algl" name="zero"/>
</0MA>
<0MA>
<OMS cd="relationl" name="eq"/>
<0OMA>
<OMS cd="arithl" name="divide"/>
<0MV name="a'"/>
<0MV name="a"/>
</0MA>
<0MS cd="algl" name="one"/>
</0MA>
</0MA>
</0MBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>

<Name> power </Name>

<Description>

A binary powering function. The first argument is raised to the power
of the second argument. When the second argument is not an integer
care should be taken to the meaning of this function; however it is
here to represent general powering.

</Description>

</CDDefinition>

<CDDefinition>

<Name> conjugate </Name>

<Description>

A unary function to give the complex conjugate of its argument
</Description>

</CDDefinition>

<CDDefinition>

<Name> abs </Name>

<Description>

A unary function to give the absolute value of its argument. This is
used for the absolute size of complex numbers as well (commonly
referred to as mod).

</Description>

</CDDefinition>

<CDDefinition>

<Name> root </Name>

<Description>

A binary function to give roots. The first argument is "lowered" to
the root of the second argument. This can be viewed as the inverse of
powering as commented below.

Page 46 of 49 The OpenMath Standard (Task:

1.3)

ESPRIT project 24969: OpenMath

Care should be taken to the meaning of this function (i.e. which root
is being taken); however it is here to represent the general notion of
taking n’th roots.
</Description>
<CMP> power(root(a,n),n) = a </CMP>
<FMP>
<0MOBJ>
<0OMBIND>
<O0MS cd="quantl" name="forall"/>
<0OMBVAR>
<0OMV name="a"/>
<0MV name="n"/>
</0MBVAR>
<0MA>
<OMS cd="relationl" name="eq"/>
<0MA>
<OMS cd="arithl" name="power"/>
<0MA>
<0MS cd="arithl" name="root"/>
<0MV name="a'"/>
<0MV name='"n"/>
</0MA>
<0MV name='"n"/>
</0MA>
<0MV name="a"/>
</0MA>
</0MBIND>
</0MOBJ>
</FMP>
</CDDefinition>

<CDDefinition>
<Name> sum </Name>
<Description>
Form taking two arguments, first being an integer interval giving the
range of summation, second being the function to be summed. Compare
defint in calculus CD.
</Description>
<Example>
<OMOBJ>
<0MA>
<0MS cd="arithl" name="sum"/>
<OMA>
<OMS cd="interval" name="integer_interval"/>
<OMI> 1 </0OMI>
<0MI> 10 </O0MI>
</0MA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>

The OpenMath Standard (Task: 1.3) Page 47 of 49

ESPRIT project 24969: OpenMath

</0OMBVAR>
<0OMA>
<OMS cd="arithl" name="divide"/>
<OMI>1</0MI>
<OMV name="x"/>
</0MA>
</0MBIND>
</0MA>
</0MOBJ>
</Example>
</CDDefinition>

<CDDefinition>
<Name> product </Name>
<Description>
Form taking two arguments, first being an integer interval giving the
range of summation, second being the function to be multiped.
Compare defint in calculus CD.
</Description>
<Example>
<0MOBJ>
<OMA>
<0MS cd="relationl" name="eq"/>
<OMA>
<0MS cd="integer" name="factorial"/>
<0MV name="n" />
</0MA>
<0OMA>
<0MS cd="arithl" name="product"/>
<0OMA>
<OMS cd="interval" name="integer_interval"/>
<OMI> 1 </0MI>
<OMV name="n"/>

</0MA>
<0OMBIND>
<0OMS cd="fns1" name="lambda'"/>
<0OMBVAR>
<0MV name="i'"/>
</0MBVAR>
<0MV name="i"/>
</0MBIND>
</0MA>
</0MA>
</0MOBJ>
</Example>
</CDDefinition>

</CD>

Page 48 of 49 The OpenMath Standard (Task: 1.3)

Bibliography

[1]
[2]
[3]

(8]

[9]

[10]

Iso 7-bit coded character set for information interchange. ISO 646:1983, 1983.
Teee standard for binary floating-point arithmetic. ANSI/IEEE Standard 754, 1985.

John A. Abbott, André van Leeuwen, and A. Strotmann. OpenMath: Communicating
Mathematical Information between Co-operating Agents in a Knowledge Network. Journal
of Intelligent Systems, 1998. Special Issue: ”Improving the Design of Intelligent Systems:
Outstanding Problems and Some Methods for their Solution.”.

N. Borenstein and N Freed. MIME (Multipurpose Internet Mail FExten-
sions) Part One: Mechanism for Specifying and Describing the Format
of Internet Message Bodies. RFC: 1521, September 1993. Available at
http://www.math-inf.uni-greifswald.de/ teumer/mime/1521/rfc1521ToC.html.

Stephen Buswell, Stan Devitt, Angel Diaz, Nico Poppelier, Bruce Smith, Neil Soiffer,
Robert Sutor, and Stephen Watt. Mathematical Markup Language (MathML) 1.0 Speci-
fication. W3C Recommendation 19980407, April 1998. Available at http://www.w3.org/
TR/REC-MathML/.

O. Caprotti and A. M. Cohen. A Type System for OpenMath. OpenMath Deliverable
1.3.1b, September 1998. Available at http://www.nag.co.uk/projects/OpenMath.html.

Technical committee / subcommittee: JTC 1. ISO 9660:1988 Information processing —
Volume and File Structure of CDROM for Information Interchange. ISO 9660, 1988.

OpenMath Consortium. OpenMath Version 1 - Draft, June 1998. Available at
ftp://ftp-sop.inria.fr/safir/0M/vl.ps .

Unicode Consortium. The Unicode Standard: Version 2.0. Addison-Wesley Developers
Press, 1996.

World Wide Web Consortium. Extensible Markup Language (XML) 1.0.
W3C Recommendation REC-xml-19980210, February 1998. Available at
http://www.w3.org/TR/1998/REC-xm1-19980210.

[11] S. Dalmas, M. Gagtano, and S. Watt. An OpenMath 1.0 Implementation. pages 241-248.
ACM Press, 1997.
[12] D. Goldsmith and M. Davis. UTF-7: A Mail Safe Transforma-

tion Format of Unicode. RFC: 2152, May 1997. Available at
http://www.cis.ohio-state.edu/htbin/rfc/rfc2152.html.

Page 49 of 49

