Proposal for an extension of OPENMATH by Defining
Mathematical Properties

Arjeh Cohen, Technical University of Eindhoven, The Netherlands
Michael Kohlhase, University of Saarland, Germany

March 22, 1999

Abstract
In this note we propose a small extension of OPENMATH that actually allows to define

mathematical objects in content dictionaries. This is a step towards automation of consistency
management of content dictionaries (which is presently a human refereeing process).

1 Introduction and Motivation

With the growth of the number of content dictionaries in OPENMATH, the need will rise for
tool support in managing the mathematical knowledge they contain. In particular it will become
necessary to provide the developers of CDs with a means to ensure the consistency of CDs, since
otherwise the ontological status of the CD itself will be compromised (anything is entailed by
a contradiction). Moreover it seems simpler to guarantee the consistency than to specify the
meaning of a CD containing inconsistent information.

In the current specification of content dictionaries, CDDefinition statements can be used
to describe and specify properties of OPENMATH symbols. This can be done informally using
the description tag or formally using the FMP tag. In this note, we will only concentrate on
the formal aspects, since we are interested in the formal verification of correctness properties of
content dictionaries.

For instance in the content dictionary arith, the symbol plus is characterized by the property
of being commutative, which leaves lots of room for interpretation (although a signature could help
out a lot). Incidentally, the symbol times is specified in the same way in the content dictionary
comm.

In mathematical logic (and in mathematical practice), a “definition” is taken to be the act of
(uniquely) specifying a new concept in terms of known ones, and great care is taken to make sure
that no inconsistencies can be introduced by definitions.

As first (very simple) example let us consider the content dictionary set.ocd for sets. In
particular, let us look at the subset relation described there. Currently the symbol subset is
described as a binary relation that “is the intuitive subset relation”. The intended meaning of
subset (namely that it corresponds to C) cannot be determined at the time of the definition.
Only when we come across the definition of prsubset which represents the concept of a proper
subset, does the intention become clear. In particular, it would be perfectly sensible to add the
FMP that subset is irreflexive, which would contradict the intuition.

Elementary set theory defines the subset relation C as

SCT,iff x € T forall x € S.

i.e., in terms of the (already defined) membership relation €. This completely specifies the relation
C, since from the form of the definition it is clear that it exists and that it is unique (this can
perhaps best be seen by the equivalent definition

C:=ASNT(Vex e S=2z€T),

where the right hand side is a closed term not containing C).

In particular, the formal mathematical property that C is reflexive (V5.5 C §) is then just
a consequence of the definition. We can see that there are two kinds of formal mathematical
property, defining ones and derived ones. Intuitively, we argue to make this distinction explicit in
CDDefinitions and thus give the defining mathematical properties precedence over the derived
ones.

2 The Proposal

We propose to extend the specification of the CDDefinition tag by a variant of the FMP tag. This
DefMP is used completely analogously to FMP inside a CDDefinition, the only (crucial) difference
is in the semantics, which we will specify now.

If they are present, the set of DefMPs in the CDDefinition for a set of symbols' must
determine the existence of a unique mathematical object for each symbol.

The importance of this new tag is that the property of unique existence can be checked formally,
in many cases fully automatically by existing theorem proving systems. In some cases, such as the
C example above where the relation is given as a closed (A)-term, this is nearly trivial, in some
others (cf. sections 3.3 and 3.2) it may be quite involved.

Thus the current formal mathematical properties specified by the FMP tag have the status of
making certain derived properties of the symbols explicit (they may be interpreted as theorems
in the mathematical theory given by the DefMPs); They can be seen as sample properties or as
challenges for automated theorem provers.

Concretely, we propose to augment the DTD for CDs given in Figure 4.1 of the current draft
to be augmented with a line

<!ELEMENT DefMP %inhel2; > <!-- allow embedded OM —->
and change the clause for CDDefinition to

<!ELEMENT CDDefinition (CDComment | Name | Description | PartOf |
FunctorClass | Signature | Example | FMP |
DefMP | CMP | Presentation)* >

3 Examples

In this section we will take a closer look at some concrete examples and work out the definitions.

3.1 Explicit Definitions; the Subset Relation

Since we have already talked about the definition of the subset relation, we will only give the XML
encoding here:

<CDDefinition>
<Name> subset </Name>
<Description> The subset relation we all know and love </Description>
<DefMP>
<0OMOBJ>
<0OMA>
<0OMS cd=""relation" name="eq"/>
<OMS cd="set" name="subset">

INote that the possibility of having multiple Name tags in a CDDefinition is warranted by the current OPENMATH
standard, at least in the DTD given in Figure 4.1 (not in the description after it). We will use this feature in the
examples, e.g., for defining the natural numbers (cf. §3).

<0MBind>
<0OMS cd="ecc" name="lambda"/>
<OMBVAR><OMV name="S"/><0OMV name="T"/></0MBVAR>
<0OMA>
<OMBIND>
<0OMBIND>
<0MS cd="quant" name="forall">
<OMBVAR><OMV name="X"/></OMBVAR>
<0OMA>
<OMS cd="logic" name="implies">
<OMA><0MS cd="set" name="in"/><0MV name="X"/><0OMV name="S"></0OMA>
<OMA><OMS cd="set" name="in"/><0MV name="X"/><OMV name="T"></0MA>
</0MA>
</0MBIND>
</0MA>
</OMBIND>
</0MA>
</0MOBJ>
</DefMP>
<FMP> V S. S C S </FMP>
</CDDefinition>

As we have stated above, the unique existence property is very simple to check: we only have
to make sure that the CDDefinition? only introduces one symbol (there is only one Name tag) and
that the OPENMATH object in the DefMP is an equation, where the left-hand side is the symbol
and the right-hand side is a closed (\)-term that does not contain that symbol.

This kind of explicit definition goes a long way, and allows to specify a lot of useful mathe-
matics directly. In fact, it is commonly believed that using a few well-understood logical tools
like axiomatic set theory or the description and choice operators (as undertaken in the Principia
Mathematica), all of mathematics can be formalized this way. However, the form is often quite
unnatural, therefore there are a few other commonly used definition mechanisms in mathemat-
ics that OPENMATH may want to support. The most general one is that of so-called implicit
definitions, which we will look at in the next paragraph.

3.2 Implicit Definitions; the Functio sin

The probably most prominent example of an implicit definition is the definition of a mathematical
object as the (unique) solution of an equation. For instance the v/2 is the unique positive solution
of 22 = 2. This would be expressed in a content dictionary on algebraic numbers as

<CDDefinition>
<Name> sqr-two </Name>
<Description> The square root of two </Description>

<DefMP>
<OMOBJ>
<0MA>
<OMS cd=""relation" name="eq"/>
<0OMA>
<0OMS cd="arith" name="power"/>
<0OMS cd="arith-num" name="sqr-two">
<OMI>2</0MI>
</0MA>
<OMI>2</0MI>
</0MA>

2Syntactical variations of this construction which make this kind of definition more readable are possible. We
could define a new “definition symbol” defines in the CD basic, which is a binding object that in our example
binds the variables S and T and makes the A obsolete.

</0MOBJ>
</DefMP>
<DefMP>
<0MOBJ>
<0OMA>
<0OMS cd=""relation" name="geq"/>
<0MS cd="arith-num" name="sqr-two">
<OMI>0</0MI>
</0MA>
</0MOBJ>
</DefMP>
</CDDefinition>

We can see that in this example we have needed two DefMPs to fully specify the square root.
Naturally, the proof that these properties are indeed defining, i.e., that there is a unique mathe-
matical object, requires some mathematical insight into the theory of real numbers and in general
cannot be expected to be found by a theorem prover totally autonomously.

Another example that has been discussed in OPENMATH is the case of the function sin. This
can easily be defined to be the real part of the complex exponential function which in turn is the
unique zero of the well-known differential equation 0f = f. Again, the proof of unique existence is
quite involved but standard, and a CD could point to the relevant literature in the Description.

In the next two paragraphs, we come to two kinds of definition mechanism common in mathe-
matics and computer science where unique existence can be checked automatically in many cases.

3.3 Abstract Data Types; the Natural Numbers

So-called “abstract data types” are inductively defined mathematical structures that include lists,
natural numbers, trees, logical formulae and proofs. For instance the natural numbers are defined
to be the smallest set of objects that are generated by the constant 0 and the successor function.
The well-known Peano Axioms make the underlying mathematical concepts explicit. We could
use the DefMP mechanism explicated above directly and arrive at the following definition of the
natural numbers:

<CDDefinition>

<Name> nat </Name>

<Name> zero-nat </Name>

<Name> succ-nat </Name>

<Description> The natural numbers defined as the smallest set objects generated
by zero-nat and succ-nat

</Description>

<DefMP> zero-nat € nat</DefMP>

<DefMP> V z.z € nat = succ-nat(z) € nat</DefMP>

<DefMP> V z.zero-nat # succ-nat(z)</DefMP>

<DefMP> V z,y.succ-nat(z) = succ-nat(y) = =z = y</DefMP>

<DefMP> V P.P(zero-nat) AV z.P(z) = P(succ-nat(z)) =V z.P(z)</DefMP>

</CDDefinition>

The first two DefMPs say that nat is generated by zero-nat and succ-nat, the second two
that nat is free in zero-nat and succ-nat, i.e., that every object has a unique representation in
these constructors, and the fifth DefMP (the induction axiom) says that nat is indeed the smallest
such set. Usually in the field of algebraic specification, this information is compactly represented
as an abstract data type definition like

nat=ADT(zero-nat:nat,succ-nat:nat->nat)

which has the same semantics, since it entails generatedness and freeness axioms for all constructors
(zero-nat and succ-nat in this case the first four DefMPs) and the respective induction axiom
(the fifth DefMP). The abstract data type for lists would be of the form

1ist=ADT(nil:1list,cons:1list->el->1list)

To model this, we could add a new n-ary symbol adt to the content dictionary basic® with the
obviously semantics that would allow us to symbolize the definition of the natural numbers as

<CDDefinition>
<Name> nat </Name>
<Name> zero-nat </Name>
<Name> succ-nat </Name>
<Description> The natural numbers defined as the smallest set objects generated
by zero-nat and succ-nat
</Description>
<DefMP>
<0MA>
<0OMS cd="basic" name="adt"/>
<0OMS cd="nat" name="nat"/>
<0MS cd="nat" name='"zero-nat'"/>
<0MS cd="nat" name="succ-nat'"/>
</0MA>
</DefMP>
</CDDefinition>

Certainly this would be much more legible only at the cost of introducing a new symbol into
basic.

3.4 Inductive Definitions; Addition

Recursive functions on sorts introduced in abstract data types can be defined inductively. For
instance, addition on the natural numbers can be defined by the following two well-known equa-
tions.

Vz.x+0=2 and Vz,y.x+ s(y) =s(z +7y)

These equations define a total function, since all cases for the second argument are covered (zero
and successor) and if the equations are read as reduction rules from left to right, their application
is terminating (the number of applications is bound by the number of occurrences of s in the first
argument). Concretely, the definition of addition on the natural numbers would have the following
form:

<CDDefinition>
<Name> plus </Name>
<Description>
Addition on the natural numbers defined by induction on the second argument.
</Description>
<DefMP>Vz. 2 + 0 =z </DefMP>
<DefMP>Vz,y. = + s(y) = s(z + y)</DefMP>
<FMP>Vz,y. = +y =y + x</FMP>
</CDDefinition>

Note that we did not have to extend the definition mechanism for this special implicit defini-
tion. The only difference is that there are deduction systems that can automatically generate the
termination orderings necessary for the proof of unique existence for a great number of examples,
adding to the tool support in consistency management of OPENMATH content dictionaries.

4 Conclusion

We have proposed a modest extension to CDDefinition in OPENMATH content dictionaries that
allows to lay the infrastructure for automated tool-support for consistency management in content

3Maybe it would be better to group adt and defines mentioned above into a new CD definition-tools.

dictionaries. The new DefMP tag is analogous to the existing FMP tag but has semantics that it
fulfills a unique existence condition. In most practical cases, this can be verified by existing
theorem provers. The QMEGA system developed by the second author at the University of the
Saarland has an OPENMATH interface and can supply the necessary deduction support.

