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What is Mechanised Reasoning

e The field is 40 years old now
e |t is a subfield of Artificial Intelligence

e Motivation:
Exhibiting Intelligence by mechanising the “Queen of Sciences”

e Mechanised Reasoning System (MRS) = software system that
synthesises proofs

— Representing the problem in formal logic

— search for the proof on the level of a logical calculus
(automatically (ATP), interactively (ITP), human-oriented (HTP))

— (optional) Proof beautification/presentation

2 (©: Michael Kohlhase




State of the Art in Mechanised Reasoning

e In the Applications
: Moving into industrial applications
. only applicable for relatively trivial problems

. Basic research necessary
e |s not an accepted tool in mathematical practice.

e Trends: Try to overcome limitations by Al methods
— Knowledge-based theorem proving, Cooperation of ATP
— ldea:, use agents and OPENMATH for this

— In this talk: MBASE a mathematical knowledge base system.
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Knowledge-Based Theorem Proving?

Expressive representation formalisms (Knowledge local)
— Higher-order logic, sorted A-calculus, ...

Specialized inference processes (Knowledge implicit)

— Superposition, LEO, constraint-solvers, computer-
algebra, ...

Search

control knowledge

A
+ combinability

- efficiency

Y

+ efficiency
- flexibility

Cdlculus

factual knowledge (Axioms)

A

+ uniformity
- expressivity

+ efficiency

+ control

- more complex
inference

proof planning  (explicit method- and control knowledge) Logic
— methods as plan operators, control rule interpreter ... representation
Knowledge base (stockpiling knowledge )

— Inheritance, structure morphisms, RDBMS, semantic search,...

knowledge acquisition
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(e.g. reading math books)




Knowledge-Based, Distributed TP in MATHWEB
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MATHWEB: Implementation and Availability

e Agent shells are implemented in MOZART Oz 3.0
(concurrent, OO, constraint-logic programming language)

— Get network communication layer for free
— Tested with QMEGA, DORIS

e Avalilable Mathematical Services include:

— Automated theorem provers: OTTER, SPASS, PROTEIN, BLIKSEM, TPS,
EoP, .

— Proof Transformers: from these to Natural Deduction

— Computer Algebra Systems: MAPLE, MAGMA, GAP

— User Interface: LOUT ( )

— Proof Presentation: Verbalization in natural language (English)
— Knowledge base: MBASE (rest of the talk)
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The Data Model iIn MBASE
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Primary Objects iIn MBASE

Symbols

Status
Kind, Type

depends_on

used_by_definition defined_by

Definitions

contains
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used by assertion

proves

Proofs

Assertions

Status
Sequent

Proof Objects

formalizes

Description




A-Calculus: an expressive Formalism for Mathemat-
ICS
e Example: . =(countable(INTY))

e Theorem: The set of sequences of natural numbers is uncountable.
— = AM.3F.surj(F,IN, M) or AM.—~3F.inj(F, M,IN)
— = AFMNVX € M.AY € N.FY =X
- AY = AFYX.AX = B(FX).

e Proof: ( )
Assume that there is a surjective mapping f: IN — IN™. Consider the

diagonal sequence g(¢) := f(i,7). Increment (h(i) := f(¢,7) + 1); obviously
h # f(j) forall j € IN, so h ¢ Im(f) (contradiction).

9 (©: Michael Kohlhase




Correctness Management

e Problem: Consistency is a central concern for any knowledge base.
e Theory: Consistency cannot be ensured [G0Odel’32].

e Practice: Reduce problem to small set of axioms.
(Conservative/Definitional Extension, proofs)

e Evidence for consistency in MBASE
— Full proofs can be too large/tedious

— Conjectures are first-class citizens of mathematics,
e.g. in the initial development of a theory.
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OPENMATH as a Content Language for MATHWEB

e Desiderata: Need to express
— Formulae and terms with meta-variables
— Formal proof objects and computations (with meta-variables)

— Specifications of (fragments of) logical systems,
e Schematic Objects (decl, object, seqent, resource, language)

e |dea: Use OPENMATH with new content dictionary OpenProof .
— Schema Symbols: formula , term , proof , computatio n
— Attribute Symbols: language , type
— Further CDs for logical systems proper FFOL, ND(FOL), HOL, ECC..
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Example: Schematic Formula

<OMOBJ><OMRD>
<OMScd=" openproo f" name="formu la " />
<OMBVAR>
<OMATTR><OMP>
<OMScd=" openpr oof " name="lang uage"/ >
<OMScd=" FFOL" name="CNF/>
</OMATP>
<OMV name="F"/>
</OMATTR>
</OMBVAR>
<OMV name="F"/>
</OMBIND><OMOB>
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Proofs iIn OPENMATH
e |dea: Use Propositions-as-Types: =I(AXapp.- N I(ANER(X),AEL(X))

<OMOBJ><OMBD><OM cd=" ND(FOL)" name="implie sl "/>
<OMBVAR><OMAR>
<OMATP>
AN B] [A A B] <OMScd=" openpr oof " name="type "/>
— AER — AFL
b A </OMATP>

BAA N <OMV name="X"/>
Ny </OMATTR></OMBYAR>
ANB=BANA <OMA><OMSd=" ND(FOL)" name="andl " >
<OMA><OMA><@MVcd=" ND(FOL " name="andEr " >
<OMV name="X"/>
</OMA>
<OMA><OMS&d=" ND(FOL)" name="andEl ">
<OMV name="X"/>
</OMA></OMAX</O MA>
</OMBIND></ OMOB>
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The Curry-Howard Isomorphism

e ldea: use the structural similarity between A-Calculus and ND.

— — VS. =

— Types vs. Formulae ("propositions as types™)

— A-terms vs. Proofs ("Proof terms”™, ™proofs as programs™)

— wff:app VS. = E, wff:abs vsS. = I

e A provable, iff « non-empty
— AXAY3.X, has Type a = 8 = «
— AX a5 AY o A2 X(Z,)Y (Z2): (a =B =) =2 (a—=0) 2 a— 7y

e New CD OpenProof containing symbols for all ND inference rules
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The Curry-Howard Isomorphism (Example)

I'=Y: ' Z:
I' = X: ' Z: I'=YZ:
I'FX(Z,Y(2)):
(X:a—= [ =], [Yia— Bl M2.X(Z,Y (Z)):
[(X:a — =] g \YZ.X(Z,Y(2)):
0 by AXY Z.X(Z,Y(Z)):

wobei I' = [X:a — 0 — v, [Y:a — ], [ Z:a]
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Logical Issues

e The representation formalism must meed conflicting requirements!

e Quasi-religious battle over the “right logic”
— classical vs. constructive
— typed ( ) vS. untyped ( )
— If types, how strong? ( , , ,
— machine-oriented vs. human-readable
— partial functions? multi-valued?

e MBASE: Conservative Extension Principle with Logic Morphisms
(accommodate for all possible desires.)
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Logic Morphisms

e Definition: S =(L,0C),
— L language (set of well-formed formulae)
— C calculus (set of inference rules)
— D:H ke Ais a C-derivation of A from H
e Definition: F:§ — 8,
FEL— L
FP from C-derivations to

C’-derivations, such that for any C-derivation
D:H ¢ A, we have FP(D): FX(H) o FA(A).

e Logic morphisms transport proofs!
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Sorted A-Calculus
e Distinguish between and

as general Mechanism

Example: Higher-Order Unification
+:N - N — N] y \
1:E - E — [ sV,
E—>E —
” GeT(¥) =4 +ZoWo, ¢
+:0 —- O — E]
- | +t4ndn
(AX.+ X X):=N — E]

base sorts: e.g. (AX.X):C <R — R,

:2B. [+:N > N> N1E - E - ENO - O — E]
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Relativisation = Morphism to A™
e Signature: R([+:N - N —- N]) =VX, Y.N(X)AN(Y) = NX+Y).

e Formulae: R(VXp.A) =VX.B(X) = R(A)

VX.B(X) = C(AX)

. A:B—-C B:B /V B
o Sorts: AB-C ) — B(B)= C(AB) B(B)
C(AB)
VXa A B E /g VX.B(X) = R(A)
e Proofs: R A B/X]A ~ B(R(B)) = R([B/X]A) “B(B)

R([B/X]A)
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Mathematical Vernacular (Structures)

e Approximate day-to-day language of mathematicians

e |n particular support for

Set = Top,_.,,

Op “A—>A—A
. e.g. group

e Analogous: application with labels, e.g. associativity

assoc := A\ SN FVX VYNV Z.FX(FYZ) = F(FXY)Z

e Problem: what is the relation between Sort A and set S.
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Dependent Sorts, Selection Sorts

Idea: Use record-labels as dependent sorts

Example: Setop := [Set:Top,_,,, Op:Set — Set — Set]
prove IN:Top, and +:IN — IN — IN for [Set = IN; Op = +]::Setop
Analogous: assoc:Top,,_,, EaR (Set — Set — Set) LN Top,

Problem: semigroups are associative

Idea: Use - ( ).

Semigroup := {Setop|(AX.[assocQs.;(X.Set)Qp,(X.0p)])}

and so on...

21 (©: Michael Kohlhase




Knowledge Acquisition (Rambo)

e Where does all the knowledge for MBASE come from?

e |dea: Reading math books!
— Cooperative, restricted vocab, syntax and ambiguity.
— discourse structure explicitly marked
— Object ontology (mathematics) totally formalized (Bourbaki)

e State: 3 Theorems + proofs (Masters Thesis Baur)
— Theorem 2.3.3 (Triangle Inequality) For any a and b in IR, we have
la+b| < |a| + |b].
— Proof: From 2.3.2(e), we have —|a| < a < |a| and —|b| < b < |b|. Then, adding
and using 2.2.6(b), we obtain
—(la[ + b)) < a+0b < |al + [b]

Hence we have |a + b| < |a| + |b| by 2.3.2(d).
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Discourse Semantics of a Definition

e Definition 1.2.8 For functions f: A — B and ¢g: B — (', the composite
function g o f (note the order!) is the function from A to C defined by
go f(x):=g(f(x)) forx € A. (see figure 1.2.5.)

e Semantics = Discourse structure + Discourse representation structures
(DRS)

\ /

_ |
_ : |
, }
A,B,C, f,g w:ﬁ
set(A), set(B), set(C) | _ ?iwo f,A,0)
func(f, A, B) _
func(g, B, C) Q(Va: Ag o f(x) = g(f(2)))
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Representation in MBASE

i symbol ]
Name . compose-functions
Key . BarShe: it ra82; 1. 2. 8
Type : Vapr(B =) 2 (a—=B) > a—y
Formula : AFAGAz.F(Gz)

| Help . Function Composition .

24 (©: Michael Kohlhase




Discourse Structure of a Theorem

T
|

:S_ﬁ

msﬁ// Suc Reason
\_, Suc Reason Ref
\Em__m Ref "adding” | 2.3.2(d)
Ante Suc 2.2.6(b) la + b|] < |a| + |
Ref Conj_ —(la| +10]) < a+b < la + [b]
/ T
2.3.2(e) —a<a<|q —b < b < |}
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Yields the Proof Plan

L1 L1 FaelR

L2 L2 +FbelR

L3 L1 F —a <a <|a

L4 L2 +F —b<b<|b

L5 LLL2 F —(la|+ b)) <a+b<|a| +|b]
Ass L1,L2 F |a+b| <la|+ |

e Direct image of the discourse semantics
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(Ass)

(Ass)

(plan L1 2.3.2(e))

(plan L2 2.3.2(e))

(plan L3 L4 2.3.2(b) “adding”)
(plan L5 2.3.2(d))




Conclusions

e Cooperative knowledge-based Theorem proving as an application area
for OPENMATH.

— agent-based model for integration of mathematical services
— Communication Language: KQML; Content language OPENMATH

— Implemented ( )!

e Knowledge base system MBASE
— gives a semantics to interaction/integration
— can be used to generate/replace content dictionaries

— Knowledge Acquisition by reading MATHML/OPENMATH

27 (©: Michael Kohlhase




Desiderata for OPENMATH
e Status of Content Dictionaries

— <Defmp> proposal (see last talk)
— Inheritance of CDs (Model the structure of MBASE?)

— Dynamic CDs (as a joint base of communication)

e Integrate OPENMATH/MATHML beyond K-12
( )

e Towards Plug-and-Play mathematics
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