Digital Library of Mathematical Functions: \LaTeX, MathML and … OpenMath?

Bruce R. Miller
NIST
Needing no introduction...
Old, but still relevant

Citations of AMS55 relative to All Scientific.

AMS55 is apparently used more than ever.
Time for a Rewrite

- New functions;
- New properties of old functions;
- New applications.
- …and many opportunities.
 - The Internet;
 - Computer Algebra, Theorem Proving systems;
 - The Semantic Web.
DLMF Project

- Started looking at feasibility in 1997.
- NSF funding for authorship in 1999.
- 4 editors, ≈ 12 associate editors, ≈ 40 authors.
- Goals:
 - New mathematical content updating AMS55,
 - in form of Digital Library,
 - and in print form,
 - by 2005.
Choices: \LaTeX{}, XML, MathML, OpenMath

- \LaTeX{} is obviously good choice for document source.
- …and obviously bad.
- Target: XML, MathML, and (eventually) OpenMath.

I don’t need to tell you why…
Overview of talk

- \texttt{LATEXML} tool.
- Metadata: markup, annotations and connections,
- Data model of the Library
- Math: Parsing, synthesizing meaning.
\textbf{\LaTeX}\textsc{xml}: Goals

- $\LaTeX \Rightarrow \text{XML}$ Transformer
 - General purpose.
 - \LaTeX-like DTD (or other?)
 - Math to MathML, OpenMath
- Closely mimic \TeX behaviour (& Quirks).
- Lossless.
- Extensible, Adaptable.
- Encourage higher-level markup, declarations.
- …and finish DLMF project!
To make more feasible adopt

- Modestly Content-oriented \LaTeX.
- Discourage Presentation Markup but don’t forbid.
- Encourage Content Markup, but keep typeable.
- Use document-specific information (internal/external) to resolve ambiguities.
Metadata: Making Connections

- Traditional \LaTeX: \ref, \cite, \index.
- Leverage our mathematics markup.
- Additional markup:
 - Annotations \note.
 - Special metadata: Original handbook reference.
 - Additional declarations.
Metadata: Using Connections

- Postprocessing XML documents.
- Disassemble XML into ‘database’.
- Note all connections.

Not really that hard.
DLMF Data Model

- Simple model (maybe too simple)
 - ID ⇒ Object(XML)
 (Chapter, Section, Table, Equation, ...)
 - linkages embedded within each object
 (insertion, reference, ...)

- Can (re)construct as necessary
 - Sectional units,
 - Search ‘hit-lists’

- Developing an ‘Indexing’ API by which
 search, refnum lookup, ...
 ⇒ ID’s
TEX source $\xrightarrow{\text{\LaTeX XML}}$ XML

- Let \LaTeX XML deal with TEX quirks.
- Acts as structure-preserving Lexer.
 - Possibly augmented (math) Tokens:
 - Name,
 - Unicode, Font, ...
 - PartOfSpeech (ID, Function, Operator, ...
 - Type (eventually).
 - preserve any given structure (eg. \frac, ...)
Math: The Easy Stuff

\[a = b + c \]

\LaTeX XML produces the tokens

\[
\begin{align*}
 &\text{<XMTok} a \text{</XMTok>} \\
 &\text{<XMTok} = \text{</XMTok>} \\
 &\text{<XMTok} b \text{</XMTok>} \\
 &\text{<XMTok} + \text{</XMTok>} \\
 &\text{<XMTok} c \text{</XMTok>}
\end{align*}
\]
Grammar-based parser.

Undeclared tokens get PartOfSpeech from

- Document-specific dictionary
 (possibly sectionally scoped)
- Default dictionary

Resulting Expression tree

- inspired by OpenMath.
- \approx Content MathML;
 (although we haven’t done this yet).
- Easily converted to Presentation MathML.
Math: The Easy Stuff continued

\[a = b + c \]

\LaTeX_XMLpost parses this into

\[
<\text{XMApp}><\text{XMTok}>=</\text{XMTok}>

<\text{XMTok}>a</\text{XMTok}>

<\text{XMApp}><\text{XMTok}>+</\text{XMTok}>

<\text{XMTok}>b</\text{XMTok}>

<\text{XMTok}>c</\text{XMTok}>

</\text{XMApp}>

</\text{XMApp}>

10 Years of OpenMath,
Math: The Easy Stuff continued

\[a = b + c\]

Conversion to MathML yields

```xml
<math xmlns="http://www.w3.org/1998/Math/MathML">
  <mrow>
    <mi>a</mi>
    <mo>=</mo>
    <mrow>
      <mi>b</mi>
      <mo>+</mo>
      <mi>c</mi>
    </mrow>
  </mrow>
</math>
```
Extension of Dictionary to support some Type system.

Type Analysis to further resolve ‘meaning’

→ OpenMath.

Any advice?
Reduce ambiguities by introducing higher-level markup:

\[\text{deriv}[n]{f}{x} \Rightarrow \frac{d^n f(x + y)}{dx^n} \]

\LaTeX \text{ code:}

\textit{omitted}

\LaTeXXML \text{ declaration:}

\begin{verbatim}
DefConstructor('deriv[]{}{}',
 "<XMApp !#2(POS='BIGOP')>
 . "<XMTok name='deriv'/>
 . "?#2(<XMAvg>#2</XMAvg>)!#2(<XMTok name='Empty'/>)
 . "<XMAvg>#3</XMAvg>
 . "?#1(<XMAvg>#1</XMAvg>)</XMApp>";
\end{verbatim}
\textsc{LaTeXML} constructs the tree:

\begin{verbatim}
<XMApp><XMTok name='deriv'/>
 <XMAArg><XMTok>f</XMTok>
 <XMTok>(</XMTok><XMTok>x</XMTok><XMTok>+</XMTok><XMTok>y</XMTok><XMTok>)</XMTok>
 <XMTok>x</XMTok><XMTok></XMTok>
 <XMTok>+</XMTok><XMTok>y</XMTok><XMTok></XMTok>
 </XMAArg>
</XMApp>
\end{verbatim}

Parser can treat args individually,

\ldots avoiding much guesswork.
Math: Special Functions

With appropriate TeX macrology:

\[\HyperpFq{p}{q} \Rightarrow p F_q \]

Introduce notion of evaluating a function at:

\[\HyperpFq{p}{q}@{a}{b}{z} \Rightarrow p F_q (a; b; z) \]

or (alternative notation)

\[\HyperpFq{p}{q}@@{a}{b}{z} \Rightarrow p F_q \left(\begin{array}{c} a \\ b \end{array}; z \right) \]

Palatable notation? Easier to type than

\[\sideset{-p}{-q}{\mathop{F}}\left(\{a \ \atop b\};z\right) \]
With the end result:

\[
\begin{align*}
\langle \text{XMApp} \\ \\
\langle \text{XMTok name='HyperpFq'>F</XMTok> \\
\langle \text{XMTok}>p</XMTok> \\
\langle \text{XMTok}>q</XMTok> \\
\langle \text{XMTok}>a</XMTok> \\
\langle \text{XMTok}>b</XMTok> \\
\langle \text{XMTok}>z</XMTok> \\
\rangle \text{XMApp}
\end{align*}
\]

and we know which ‘\(F \)’ is intended.
Math: Issues

- Role of text and spacing in math.
- Overloading of *symbols* (scoping?)
 - f is a function here, but a variable there.
- Palatable content math markup for \LaTeX.
- For *really* meaningful math (e.g., OpenMath)
 - need type analysis
 - need more info from authors
- Open ended...
Trends? (Or Wishes)

- Continued development and support for MathML
- Ditto for OpenMath
- Convergence of Markup styles and DocTypes for
 - Various \LaTeX\Rightarrow XML converters
 - Richer \LaTeX content markup in general (\LaTeX3?)
 - Project Authors able use different tools \LaTeX, CAS, Thm.Provers, Word Processors.