Groups and Certificates
(Part II)

Volker Sorge

University of Birmingham, UK

still joint work with
Arjeh Cohen, Technische Universiteit Eindhoven, The Netherlands
Scott H. Murray, Technische Universiteit Eindhoven, The Netherlands
Martin Pollet, University of Saarbricken, Germany

@© Sorge, 13.5.2002, Eindhoven — p.!

Motivation (=t

m Check plausibility/correctness of CAS results
= Have an easy and convincing argument

= Nevertheless use a “clever’” argument
= Certify mathematics like mathematicians

= Are certificates sufficient to
= construct a formal proof?
= plan a formal proof?

@© Sorge, 13.5.2002, Eindhoven :

Implementation

m GAP functions give solutions + certificates

m translation of certificates into ad hoc explanations
m translation of certificates into formal proofs

m provide proof planning machinery in Omega

B abstraction to retain comprehensibility

= Integrate the certificates into the reasoning

= construct highly hierarchical plans

@© Sorge, 13.5.2002, Eindhoven — p.:

Queries — Overview

= What is the order of a group G?

m |s a permutation NOT an element G?

@© Sorge, 13.5.2002, Eindhoven — p.

Queries — Overview

= What is the order of a group G?

m |s a permutation NOT an element G?

m s g an element G?
m [s H a subgroup of G?

m Determine the orbit of x € Q2 under GG?

= What is the stabiliser subgroup forz € Q In G?

m Find a base for G?

@© Sorge, 13.5.2002, Eindhoven — p.

Formalisation £

m Cycle: duplicate free list of natural numbers

= Permutation: set of disjoint cycles or
composition of permutations

@© Sorge, 13.5.2002, Eindhoven — p.t

Formalisation =&

m Cycle: duplicate free list of natural numbers

= Permutation: set of disjoint cycles or
composition of permutations

= properties give additional proof obligations

@© Sorge, 13.5.2002, Eindhoven !

Formalisation £

m Cycle: duplicate free list of natural numbers

= Permutation: set of disjoint cycles or
composition of permutations

= properties give additional proof obligations
m Operator @ to apply the permutations to points
B g1 = g2 < Vpen.g1@n = goQn

= Other formalisations straightforward

@© Sorge, 13.5.2002, Eindhoven — p.t

Annotated Constants [£€)

m Always concrete permutations

m Declaration of (a, b, c) denotes a constant with
® annotation, that it is a cycle of the objects a, b, c
m definition (cons a(cons b(cons c nil)))

m Declaration of {a, b, c} denotes a constant with
®m annotation, that it is a set containing the objects a, b, ¢
m definition Az.(z=aVz =0V x =)

= {(1,2),(3,4)} and {(3,4),(2,1)} denote the same
constant

= ‘trivial’ properties for free

@© Sorge, 13.5.2002, Eindhoven — p.¢

Formalisation of Concepts

Orbit(Go—o, Qp—5-48, 3) = A\yp.dg:G.y = gQx
Stabiliser(G,—o, Qy—5-8,25) = Agarg € G N\ gQz = x
StabChain(G, @, (a :: 1))jst) = Stabiliser(StabChain(G, @, 1), @, a
StabChain(G o0, @a—5-3, (jist)
Base(Ga—so, Q@uspg; list)

= StabChain(G, @, 1) = {id}

@© Sorge, 13.5.2002, Eindhoven — p.’

M 3

Formalisation of Queries EE)

How to formalise ‘Compute the Orbit of 1 under G’

@© Sorge, 13.5.2002, Eindhoven — p.¢

Formalisation of Queries EE)
How to formalise ‘Compute the Orbit of 1 under G’

dr.x = 1G

@© Sorge, 13.5.2002, Eindhoven — p.¢

M 3

Formalisation of Queries EE)

How to formalise ‘Compute the Orbit of 1 under G’

dr.x = 1G 1G =1G

@© Sorge, 13.5.2002, Eindhoven — p.¢

&8

Formalisation of Queries EE)

How to formalise ‘Compute the Orbit of 1 under G’

dr.x = 1G 1G =1G

m ‘compute concrete set’ not expressible

m control of proof planner forces to instantiate
concrete objects

@© Sorge, 13.5.2002, Eindhoven — p.¢

Hierarchical Proof Planning

m Proof plans are composed of macro steps:
methods = tactic + specification

m Execution of methods leads to logic level proof

B minor queries recur frequently in proofs of more
complicated gueries

m postpone the solution of these queries
m justify minor queries with critical methods

m plan subproofs when executing a critical method

@© Sorge, 13.5.2002, Eindhoven — p.¢

Using Computer Algebra &)

1. in one generic control rule:

B compute hints with GAP to instantiate meta-variables
(e.g. generators, orbits, stabiliser sets etc.)

m verified during subseguent planning process

© Sorge, 13.5.2002, Eindhoven — p.1(

Using Computer Algebra [#€)

1. in one generic control rule:

B compute hints with GAP to instantiate meta-variables
(e.g. generators, orbits, stabiliser sets etc.)

m verified during subseguent planning process
2. In methods:

m apply GAP to solve equations, apply or multiply
permutations,

m verified when proof plan is executed (including
recursive calls to GAP)

© Sorge, 13.5.2002, Eindhoven — p.1(

Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

L25 - {(17972787 11737 1074777576)} = <{alaa2}> InGroup

© Sorge, 13.5.2002, Eindhoven — p.11

Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

Log F (CLQ * al) c <{a1, a2}>
L28 = {(1797278711737 1074777576>}: (aQ*al)
Los F {(1,9,2,8, 11, 3, 10,4,7,5,6)} S ({al,a2}> Re-Represent Log, Log

© Sorge, 13.5.2002, Eindhoven — p.11

Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

Log F (CLQ * a1) c <{a1, a2}>
L28 = {(1,9,2,8, 11,3, 10,4,7,5,6)} = (CLQ * al) EQU&'-WIth-GAP
Los F {(1,9,2,8, 11, 3, 10,4,7,5,6)} S ({al,a2}> Re-Represent Log, Log

© Sorge, 13.5.2002, Eindhoven — p.11

Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

L3y F a1 €{a1,a:2}

L3g F as €{a1,as2}

Log F (ag*xaq) € ({a1,a2}) Prod-Of-Gen L34, L3g
Log F {(1,9,2,8,11,3,10,4,7,5,6)} = (as + a;) Equal-With-GAP

Lys F {(1,9,2,8,11,3,10,4,7,5,6)} € ({a1,a2}) Re-Represent Lyg, Log

© Sorge, 13.5.2002, Eindhoven — p.11

Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

L3y F a1 €{a1,a:2} In-Set

L3g F as €{a1,as2} In-Set

Log F (ag*xaq) € ({a1,a2}) Prod-Of-Gen L34, L3g
Log F {(1,9,2,8,11,3,10,4,7,5,6)} = (as % a;) Equal-With-GAP

Lys F {(1,9,2,8,11,3,10,4,7,5,6)} € ({a1,a2}) Re-Represent Lyg, Log

© Sorge, 13.5.2002, Eindhoven — p.11

List of Methods

m 6 basic ND methods

= 5 methods from set theory

= 3 methods using GAP

= 5 methods from permutation group theory

= 6 domain specific methods (introducing
lemmata etc.)

m 6 Critical methods

© Sorge, 13.5.2002, Eindhoven — p.1-

Experiments [#¢)
1600 problems: randomly generated permutations in S5 and Ss.
Member- Nonmembership | Average
Generating set ship Unexp. | Expanded | Order
2 Elem. of S; 4.9 68.8 198.9 58.8
4 Elem. of S; 6.1 88.9 360.5 112.6
2 Elem. of Sg 5.0 160.1 754.6 25217.2
4 Elem. of Sg 6.9 233.7 1313.0 37389.8

@© Sorge, 13.5.2002, Eindhoven — p.1:

Future Work

= Extend our work to graph theory

= Show non-isomorphism of graphs

© Sorge, 13.5.2002, Eindhoven — p.14

	Motivation
	Implementation
	Queries --- Overview
	Formalisation
	Annotated Constants
	Formalisation of Concepts
	Formalisation of Queries
	Hierarchical Proof Planning
	Using Computer Algebra
	Example --- Membership
	List of Methods
	Experiments
	Future Work

