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Motivation (=t

m Check plausibility/correctness of CAS results
= Have an easy and convincing argument

= Nevertheless use a “clever’” argument
= Certify mathematics like mathematicians

= Are certificates sufficient to
= construct a formal proof?
= plan a formal proof?
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Implementation

m GAP functions give solutions + certificates

m translation of certificates into ad hoc explanations
m translation of certificates into formal proofs

m provide proof planning machinery in Omega

B abstraction to retain comprehensibility

= Integrate the certificates into the reasoning

= construct highly hierarchical plans
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Queries — Overview

= What is the order of a group G?

m |s a permutation NOT an element G?
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Queries — Overview

= What is the order of a group G?

m |s a permutation NOT an element G?

m s g an element G?
m [s H a subgroup of G?

m Determine the orbit of x € Q2 under GG?

= What is the stabiliser subgroup forz € Q In G?

m Find a base for G?
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Formalisation £

m Cycle: duplicate free list of natural numbers

= Permutation: set of disjoint cycles or
composition of permutations
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Formalisation =&

m Cycle: duplicate free list of natural numbers

= Permutation: set of disjoint cycles or
composition of permutations

= properties give additional proof obligations
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Formalisation £

m Cycle: duplicate free list of natural numbers

= Permutation: set of disjoint cycles or
composition of permutations

= properties give additional proof obligations
m Operator @ to apply the permutations to points
B g1 = g2 < Vpen.g1@n = goQn

= Other formalisations straightforward
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Annotated Constants [£€)

m Always concrete permutations

m Declaration of (a, b, c) denotes a constant with
® annotation, that it is a cycle of the objects a, b, c
m definition (cons a(cons b(cons c nil)))

m Declaration of {a, b, c} denotes a constant with
®m annotation, that it is a set containing the objects a, b, ¢
m definition Az.(z=aVz =0V x =)

= {(1,2),(3,4)} and {(3,4),(2,1)} denote the same
constant

= ‘trivial’ properties for free
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Formalisation of Concepts

Orbit(Go—o, Qp—5-48, 3) = A\yp.dg:G.y = gQx
Stabiliser(G,—o, Qy—5-8,25) = Agarg € G N\ gQz = x
StabChain(G, @, (a :: 1))jst) = Stabiliser(StabChain(G, @, 1), @, a
StabChain(G o0, @a—5-3, (jist)
Base(Ga—so, Q@uspg; list)

= StabChain(G, @, 1) = {id}
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M 3

Formalisation of Queries EE)

How to formalise ‘Compute the Orbit of 1 under G’
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Formalisation of Queries EE)
How to formalise ‘Compute the Orbit of 1 under G’

dr.x = 1G
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M 3

Formalisation of Queries EE)

How to formalise ‘Compute the Orbit of 1 under G’

dr.x = 1G 1G =1G
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&8

Formalisation of Queries EE)

How to formalise ‘Compute the Orbit of 1 under G’

dr.x = 1G 1G =1G

m ‘compute concrete set’ not expressible

m control of proof planner forces to instantiate
concrete objects
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Hierarchical Proof Planning

m Proof plans are composed of macro steps:
methods = tactic + specification

m Execution of methods leads to logic level proof

B minor queries recur frequently in proofs of more
complicated gueries

m postpone the solution of these queries
m justify minor queries with critical methods

m plan subproofs when executing a critical method
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Using Computer Algebra &)

1. in one generic control rule:

B compute hints with GAP to instantiate meta-variables
(e.g. generators, orbits, stabiliser sets etc.)

m verified during subseguent planning process
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Using Computer Algebra [#€)

1. in one generic control rule:

B compute hints with GAP to instantiate meta-variables
(e.g. generators, orbits, stabiliser sets etc.)

m verified during subseguent planning process
2. In methods:

m apply GAP to solve equations, apply or multiply
permutations,

m verified when proof plan is executed (including
recursive calls to GAP)
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Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

L25 - {(17972787 11737 1074777576)} = <{alaa2}> InGroup
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Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

Log F (CLQ * al) c <{a1, a2}>
L28 = {(1797278711737 1074777576>}: (aQ*al)
Los F {(1,9,2,8, 11, 3, 10,4,7,5,6)} S ({al,a2}> Re-Represent Log, Log
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Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

Log F (CLQ * a1) c <{a1, a2}>
L28 = {(1,9,2,8, 11,3, 10,4,7,5,6)} = (CLQ * al) EQU&'-WIth-GAP
Los F {(1,9,2,8, 11, 3, 10,4,7,5,6)} S ({al,a2}> Re-Represent Log, Log
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Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

L3y F a1 €{a1,a:2}

L3g F as €{a1,as2}

Log F (ag*xaq) € ({a1,a2}) Prod-Of-Gen L34, L3g
Log F {(1,9,2,8,11,3,10,4,7,5,6)} = (as + a;)  Equal-With-GAP

Lys F {(1,9,2,8,11,3,10,4,7,5,6)} € ({a1,a2}) Re-Represent Lyg, Log
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Example — Membership &)

M = {a1,a:2) = ((1,10)(2,8)(3,11)(5,7), (1,4,7,6)(2,11,10,9))
Show that (1,9, 2,8,11,3,10,4,7,5,6) € M holds:

L3y F a1 €{a1,a:2} In-Set

L3g F as €{a1,as2} In-Set

Log F (ag*xaq) € ({a1,a2}) Prod-Of-Gen L34, L3g
Log F {(1,9,2,8,11,3,10,4,7,5,6)} = (as % a;)  Equal-With-GAP

Lys F {(1,9,2,8,11,3,10,4,7,5,6)} € ({a1,a2}) Re-Represent Lyg, Log
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List of Methods

m 6 basic ND methods

= 5 methods from set theory

= 3 methods using GAP

= 5 methods from permutation group theory

= 6 domain specific methods (introducing
lemmata etc.)

m 6 Critical methods
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Experiments [#¢)
1600 problems: randomly generated permutations in S5 and Ss.
Member- Nonmembership | Average
Generating set ship Unexp. | Expanded | Order
2 Elem. of S; 4.9 68.8 198.9 58.8
4 Elem. of S; 6.1 88.9 360.5 112.6
2 Elem. of Sg 5.0 160.1 754.6 25217.2
4 Elem. of Sg 6.9 233.7 1313.0 37389.8
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Future Work

= Extend our work to graph theory

= Show non-isomorphism of graphs
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