Adventures in Connecting
Software

Steve Linton

Centre for Interdisciplinary Research in Computational Algebra

University of St Andrews
Overview

- Linking Mathematical Software
 - Maple and PVS
 - w. Adams, Dunstan, Gottliebsen, Kelsey, Martin
 - GAP and X
 - work of many (several of them here)
 - GAP packages linking specialized tools
 - GAP as a specialized oracle for symmetry
 - GAP-driven Web sites
- Observations and Possible Future Directions
 - “Why aren't we using”
Linking Maple and PVS

- Use PVS where Maple has known deficiencies
 - Checking analytic side-conditions
- Ad Hoc interface:
 - Maple writes PVS input
 - syntactical formula translation
 - filter cleans PVS output
 - Tcl/Tk manages PVS interaction
- Custom Real analysis theory in PVS

\[
\begin{align*}
 f := \frac{1}{\cos(x) + 2}; \\
 f &:= \frac{1}{\cos(x) + 2} \\
 \text{iscont}(f, x=-\infty..\infty) &\quad \text{false} \\
 \text{PVSiscont}(1/(\cos(x) + 2), -\infty, \infty) &\quad \text{true}
\end{align*}
\]
Maple/PVS Ctd.

• Theory and tactics library can automatically prove many useful properties of real functions:
 – continuity, limits, differentiability, monotonicity, etc.
 – “High school” syntax-directed strategy

• Applications to discharging side conditions for definite integration, ODEs, etc.

• Now applying same tools to analysing control systems
 – avionics, air traffic control,...
 – Simulink/PVS, work in ClawZ, ProofPower

• NASA, Qinetiq
GAP – The Publicity Slide
Groups Algorithms Programming

Symmetry -- a universal phenomenon in science and nature
Groups -- the mathematical language for describing symmetry
GAP -- state of the art software for computing with groups
500K lines of code
300MB of databases
20+ refereed user-contributed packages
Used by hundreds of researchers world-wide -- in mathematics, physics, chemistry and computer science

Known GAP 4 User Sites
The GAP System

```
gap> AvgOrder :=
  > g->Sum(ConjugacyClasses
  > c-> Size(c)*Order(Representative(c)))/
  > Size(g);

function( g ) ... end

gap> AvgOrder(MathieuGroup(11));
53131/7920

gap> ForAny(AllSmallGroups([2..100]),
  > g->IsInt(AvgOrder(g)));
false
```

- Read-eval-print interface
- Extend and interact paradigm
- Complex “abstract” objects such as groups
- Generic operations
- Object/value oriented
 - not expressions
 - not worksheets
- GPL
Capabilities of GAP (including Packages)

- Permutations and perm. groups
- Finitely-presented groups
- Polycyclic groups
- Matrix groups
 - finite fields
 - crystallographic
- Lie and other algebras and quantum groups
- Semigroups and Monoids
- Character tables
- Graphs and Codes

Basic functionality for:
- Number theory and combinatorics
- Polynomials and Groebner bases

System & support functions:
- lists and records
- files, strings, slave processes, packages
- xgap -- basic GUI and some graphical applications
GAP Databases

- **Small Groups**
 - all 423,164,062 groups of order at most 2000
 - mainly represented by polycyclic presentations
 - stored in 26MB -- an average of 2 groups/bit
 - identification info for 4 million of them

- **Character Tables and Tables of Marks**
 - 1323 ordinary character tables, plus Brauer tables
 - rich objects, complex links with each other and groups

- **Transitive and Primitive Groups:**
 - 41,863 permutation groups
Interfacing to GAP
The Stone Age

- 1990-99
- GAP 3
- Packages interfacing GAP to specialized C stand-alone software
 - p-Quotient, nilpotent Quotient, Knuth-Bendix
- Vector Enumerator
- C meataxe
- nauty (twice!)

- GAP writes input files for other programme
- GAP invokes other program
- Program writes GAP input to a file, possibly aided by a translator
- GAP reads and returns result.
- Works OK.
Interfacing to GAP
The Bronze Age

- 1999-
- GAP 4.2 and up supports interacting with other programs via pseudo-ttys
- Steer the computation in the support program at run-time.
- String and file handling also much improved
- GAPdoc package include basic XML parser
- (Enhanced) packages for interacting with
 - ACE coset enumerator
 - p-Quotient, nilpotent quotient, Knuth-Bendix
 - KANT number theory package
 - Singular (finer-grained)
- prototype OM phrasebook
- atlasrep package uses FTP to access database
GAP as a Component

- GAP is not a good neighbour
 - intolerant memory manager
- “Have” to use GAP in a subprocess via cmd-line
- GAP UI designed for humans, not so great for automation
- Slow start-up

Some tips:
- -p option adds status annotations to the output stream
- -T disables break loop
- saved workspaces
- control output formats
 - Print commands
 - a GAP I/O loop
- simplify inputs by writing GAP functions
Experiences of Linking to GAP

- From Constraint Solving Systems
 - Eclipse, ILOG Solver
- GAP acts as a symmetry oracle in large search problems
- Simple direct interface via GAP command line
 - supported by a few special GAP functions

- Simple GAP on the Web
 - easy to set up a GAP program for CGI
 - slow start a problem
 - so keep a GAP process running and talk to it from CGI scripts or servlets
 - take care of GAP state!
- Algebra Interactive gapplets similar
Assessment of Simple Interfaces

- Fundamentally they can work well
 - easier to build specialised interface than general ones
 - wheel gets reinvented a lot
- Software structure is totally static
 - no discovery or service broking
 - two copies of nauty
- Limitations of ASCII interfaces
 - GAP parser is very fast
 - still a problem for fine-grained cooperation
Towards an Iron Age 1

- People have experimented with more sophisticated GAP-based Web sites/services
 - OpenMath for data transport
 - Some general RPC or session protocol
 - Solomon's assign/retrieve protocol
- People here have built GAP based Web services
 - please correct me, if this is wrong!
 - mainly deal with numbers and maybe very easy calculations with permutation groups
Towards an Iron Age 2

- Solomon & Struble built character table Web page
 - GAP --> pipes --> servlet --> RMI --> applet
 - a lot of work produced an applet that could display a character table nearly as well as GAP,
 - but do far less with it
 - GAP character table library users want to:
 - compute structure constants
 - search for conjugacy classes or representations of interest
 - exploit links between tables
 - link tables to concrete groups
 - The applet supported none of these
Handling Complex Objects
“What is a Group?”

- Try to write an OM CD fragment defining a constructor for a group (or algebra or character table)
 - “simple” mathematical definition
 - group = (Set, binary *, unary inverse)
 - not a useful representation most of the time
 - generating elements (and maybe operations)
 - OK for permutation and matrix groups
 - Unnatural for finitely-presented or polycyclic groups
 - May lose expensive and useful information
 - Needs a serious tool to “understand” the group
“What is a Group?”
GAP's Answer

- In GAP a group is a *closed, associative* Collection of elements which support multiplication, inverse and One
 - closure and associativity are properties
 - tested or asserted
 - a Collection is required to support certain methods
 - Enumerator, Size
- So essentially to claim to GAP that an object is a group
 - the object (and related ones) must have the right methods
 - those methods must satisfy algebraic conditions
- Roughly speaking, “group” in GAP is an Interface
A Bit More About Groups in GAP

- OK, so groups in general are an interface, what about eg permutation groups
 - now we do have generators stored
 - but we may have a huge range of other things stored
 - stabilizer chain, Size, IsAbelian, derived series,....
 - can be expensive to compute, but with them, interesting questions can be answered quickly
 - the type of the object includes information on what is known about it
 - this is used by GAP in method selection
So What does this Tell Us

- Defining a standard serialization (OM representation) for a group is the *wrong question*
 - you can't specify a serialization for an interface
- Can specify constructors for (eg) permutation groups, but you either
 - include a huge (and evolving) collection of optional fields, or attributes; or
 - you may lose a lot of valuable and small information
- Character tables are worse
 - much information is defined by reference to other tables
OK, so it's all doom and gloom?

What can we do?

- Restrict to a limited view of a specific kind of object
- Not silly: service based on special GAP package, special character values
- GAP system at the other end
- GAP as MWS client, or local GAP accessed via gapplets, etc.
- Needs remote object rather than RPC interface
- Leave the object where it is and interrogate it
- Assign/retrieve is a step towards this

- Serialize internal representation and load into an identical
- useful to more programs, but only for smaller groups
Final Thoughts

• We see links to other computational systems as key to the future of GAP
 – keen to develop useful infrastructure for this
• Also nice to have reusable robust infrastructure for building specialized services/applications/Web sites using GAP
 – willing to try and support this with GAP system
• I feel OM ought to be the tool for these, but so far it hasn't been
• Need a stateful/object based model, not just RPC